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Abstract

We generalize the classical Gauss-Markov framework to incorporate expectile regression.

Expectile regression produces the best linear unbiased estimator for regression lines other than

the mean in model designs with asymmetric conditional variance of the error term. In some

cases where OLS assumptions are violated, an expectile regression estimator is the BLUE for

the mean regression. The weighted estimator is also feasible in some cases; we provide an

example. The usual unbiased estimator for residual mean squared error may be biased in this

application: we suggest an alternative and discuss.

Keywords: Expectile Regression, Generalized Quantile Regression, Best Linear Unbiased

Estimation, Generalized Least Squares

JEL Codes: C0, C1, C4

1 Introduction

The Gauss-Markov Theorem is a foundational result in econometrics. Under simple assumptions,
that theorem states that the ordinarly least squares (OLS) estimator of regression coe�cients is
the Best Linear Unbiased Estimator (BLUE) in the sense that it has the minimum variance of
any such estimator. It may be possible to �nd a linear estimator with the same variance (see [3]),
but none better. The result extends to generalized least squares (GLS) under heteroscedasticity. In
this paper, we show that there are scenarios where an expectile regression estimator is the BLUE.

The expectile regression of Newey and Powell [37] is not known universally, but has recently
become more popular in the theoretical literature. This is primarily because expectile regression has
the potential to elicit results not found using mean regression: see [45], [25], or [44] for discussions.
Formally, expectiles are a type of generalized quantile [16], m-quantile [13], or Lp-quantile [14].
These families extend the original quantile regression of Koenker and Bassett [28] to estimation by
alternative loss functions. For the location-scale model, di�erent Lp-quantiles produce the same sets
of regression lines, making a wide class of estimators available for each such line [16]. Expectiles are
produced by using an asymmetrically weighted least squares estimator, which nests ordinary least
squares (OLS) when the weights are constant. The virtues of the asymmetric class of estimators
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are widely extolled: see [26, 29]. In that class, expectiles are the unique example with a (piecewise)
quadratic loss function and an interpretation as an expected value. Expectiles have other unique
properties; see Ziegel [52] or Bellini et al. [11]. This document presents other fundamental properties
of those estimators that should not be overlooked.

The motivating research question for this article is whether the Gauss-Markov theorem is ex-
tensible to generalized quantiles. It is. Because generalized quantiles produced by di�erent scoring
functions produce the same sets of possible regression lines [16], an obvious question is whether
any one of these scoring functions might produce the �BLUE�. Others have suggested that expec-
tiles may be the e�cient estimator for the m-quantile class [40] without exploring the concept in
detail. Following that suspicion, we �nd that a simple generalization of the Gauss-Markov assump-
tions�focused on asymmetric variance of residuals�does extend the major result to expectiles.

To obtain this result, we discuss the �usual� regression assumptions in the context of the linear
expectile regression proposed by Newey and Powell [37]. Because the expectile coe�cients are
produced by minimizing a quadratic (weighted least squares) function, the solution produces a
linear estimator in the classical sense1. The linear form of the estimator conforms to the standard
structure common to generalized least squares estimators. However, expectile regression coe�cients
are not estimators of the mean regression coe�cients except in one special case. We show that the
estimator that is the BLUE for a given expectile can be obtained trivially. We will also show
that the estimated expectile coe�cients and the corresponding predictor are the BLUE in the
traditional sense (minimum variance linear unbiased) for the mean regression coe�cients when the
usual Gauss-Markov assumptions are violated in a particular way.

A critical impediment to the adoption of expectiles has been the lack of any elementary treatment
of the subject. We seek to remedy this fault in some small way by re-casting the expectile regression
in the classical framework. In that framework, a substantial number of additional results become
obvious. Among these, we obtain the expectile GLS (or generalized expectile regression) estimator
and show that it is the BLUE for Newey and Powell's regression expectiles under heteroscedasticity.
We also provide two examples where one of Newey and Powell's expectile estimators (or our GLS
variant) is the BLUE in a mean regression. Speci�cally, we adopt four assumptions from the classical
linear model: linearity in parameters, strict exogeneity, full rank, and spherical variance-covariance.
Exogeneity and spherical variance-covariance require modi�cation in order to accommodate non-
central estimators, i.e. estimators of parameters other than the mean. The �fth assumption typically
presented in the classical linear model is Gaussianity of the residuals, which is impossible to assume
when the location parameter is not at the mean of the distribution. Accordingly, we make no such
restriction on the shape of the distribution. Quasi-likelihood models that elicit expectiles do exist:
see [38].

Asymptotic properties of the expectile regression estimators are well-studied: see [37], [23], [8].
Thus, this article is primarily concerned with �nite sample properties in the classical framework.
However, some components of our project have not been studied in the asymptotic framework. We
discuss the variance of the residuals in the �nite sample as well as asymptotically. Interestingly,
neither of the �usual� estimators for residual variance are unbiased when adapted to expectile
regression, except in special cases. We propose a third option and show that it is unbiased (at least
when the estimator is feasible) and consistent.

The rest of the document is arranged as follows. Section 2 introduces expectiles formally an

1Generalized quantiles are de�ned as minimizers of asymmetrically weighted generalized loss functions, see Daouia
et al. [16]. Only the quadratic subset of this class produces linear estimators. If we remove linearity as a requirement,
other estimators may be MVUE depending on the context; see Koenker [29].
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presents an overview of the expectile regression problem. Section 3 gives the expectile regression
an elementary treatment in terms of non-central counterparts to the Gauss-Markov assumptions.
That treatment is somewhat trivial, but novel in the literature and necessary for what follows.
In section 4 we show that an expectile estimator (or predictor) may be the BLUE estimator (or
predictor) in very simple model misspeci�cation problems. Section 5 discusses the feasibility of the
expectile weights and explains how they may be feasible. Section 6 is devoted to the estimator of
the variance parameter for a regression of this type and section 7 concludes.

2 Preliminaries

The context here is similar to a standard linear regression model. The vector y is a stochastic linear
function of X:

y = Xβ + ε. (2.1)

The data y,X are observed as vectors of n observations of random variables Y,X in a joint
probability space with outcomes in Rk+1. The elements of the linear model are the repeated
observations of the dependent variable yi, its covariates xi, the linear coe�cients β and the vector
of error terms ε. Namely,

y = [y1, ..., yn]′,

X = [x1, ...,xn]′,

xi = [1, xi,2, ..., xi,k]′,

β = [β1, ..., βk]′,

ε = [ε1, ..., εn]′.

The conditional distribution FY |X is assumed to exist for all x in the support of X. In this
document, we will explicitly consider the case where {yi,xi} are jointly i.i.d. but FY |X is not
necessarily identically distributed. Expectile regression with serial correlation or other dependency
structure has been studied recently: see for instance the working paper by Barry et al. [8] or the
closely related result in the working paper by Philipps [38]. The model conforms to the following
assumption:

Assumption 0: The process (Y,X) := {yi,xi : Ξ → Rk+1, i = 1, ..., n} is de�ned on a (joint)
probability space (Ξ,F , P ) where Ξ is the universe, F the corresponding sigma-algebra, and
P : F → [0, 1] a corresponding probability measure. The conditional distribution of Y given
X, FY |X , exists for all x in the support of X and has more than two �nite moments.

The generalized quantiles of a distribution F are a set of summary statistics indexed by τ ∈ (0, 1),
similar in many ways to quantiles [26]. They are the class of minimizers

θτ (Y ) = arg min
θ

∫
|τ − I(y < θ)|ρ(y − θ)dF (y) (2.2)

obtained by minimizing the expected value of some objective function ρ with respect to the
distribution of Y , but with asymmetric weights applied such that positive and negative errors
are treated di�erentially. For an m-class objective function ρ, these produce the standard m-
statistic when τ = .5 and the τ th m-quantile more generally [13]. When ρ is an Lp loss function,
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Figure 1: On the left, the L1 quantile loss function. On the right, the L2 quantile (expectile) loss
function. The coe�cient of asymmetry is τ = .2 in both cases. In the symmetric case, the loss
function at left produces the Least Absolute Deviation (LAD) estimator while the loss function at
right produces Ordinary Least Squares (OLS).

ρ(y − θ) = ‖y − θ‖pp, these are the Lp-quantiles of Chen [14]. The standard L1 and L2 quantile
objective functions are shown in Figure 1.

2.1 Expectiles

The L2-quantile loss function is an asymmetrically weighted least squares criterion and produces
Expectiles. Because these are the only linear estimators2 in the class of Lp-quantiles, they will be
the focus of this document. Expectiles are weighted averages that range from the minimum of F to
its maximum and nest the usual arithmetic mean at τ = .5, exactly in the same way that quantiles
nest the median. One de�nition of the τ th expectile of a distribution, which is a special case of 2.2
on the preceding page, is

µτ (Y ) := arg min
θ

∫
ςτ (y − θ)dF (y). (2.3)

Thus, Newey and Powell [37] show that expectiles can be obtained by minimizing a particular
�swoosh� function

ςτ (u) =

{
τu2 if u ≥ 0

(1− τ)u2 if u < 0
(2.4)

which is a piecewise quadratic loss function similar to the piecewise linear �check� function
of [28]. As such, expectiles have been characterized primarily by their relationship to quantiles.
However, the asymmetric least squares form of equation 2.4 makes evaluation of the τ th linear
sample quantiles into a nearly-standard weighted least squares problem: replace θ with x′β and

2A �linear� estimator can be written as β̃ = Cy for some matrix C, i.e. it is linear in each yi. The estimators
corresponding to 2.2 on the previous page have �rst-order conditions

1

n

n∑
i=1

|τ − I(y < θ̂)|ψ(yi − θ̂) = 0,

which is linear in yi only if ψ(yi − θ) = ∂
∂θ
ρ(yi − θ) is linear for all yi. Clearly this implies that ρ is quadratic.
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replace F with F(z) = n−1
∑n
i=1 I(yi − x′iβ ≥ z)

β̂τ := arg min
b

∫
ςτ (yi − x′iβ)dF

= arg min
b

n∑
i=1

wi(yi − x′iβ)2 (2.5)

where the weights wi = τ if yi ≥ x′iβ and wi = 1− τ otherwise. The coe�cients for the τ th linear
regression expectile adopt the subscript τ , say βτ , following the notation of Koenker [26]. As a
weighted least squares problem, the sum in equation 2.5 is ε̂′Wε̂, where W is the diagonal matrix
[W ]ii = wi. Naturally, the least asymmetric sum of squares estimator is β̂τ = (X′WX)−1X′Wy
which Newey and Powell show to be consistent and asymptotically normal under reasonably gen-
eral conditions. See Holzmann and Klar for more general asymptotics in the location model [23]
or Barry et al. [8] or Philipps [38] for asymptotics of the generalized estimator under non-i.i.d.
assumptions. Recent literature has added substantial context regarding the usefulness of these
statistics in economics and �nance: see [44], [45], or [52].

As the minimizer of the �swoosh� function in 2.4 and 2.5, the τ th expectile of the distribution
F has a dual interpretation. First, it can be expressed as a weighted average:

µτ (F ) =

∫
y κw(y) dF (y)

where w(y) =

{
τ y ≥ µτ
(1− τ) if y < µτ

and κ is some constant such that the weights integrate to one, κ =
(∫
w(y) dF (y)

)−1
or κ−1 =

E(w(Y )). Then for proper3 weights as above, µτ = κE(w(Y )× Y ). Because the minimizer of the
function in 2.4 does not vary over a�ne transforms of ςτ , κ will have a relatively small role in the
remainder of this document.

Alternately, the weights may be incorporated into the distribution F such that expectile may
be interpreted as the (unweighted) expected value of the distribution F̃ ,

µτ (F ) =

∫
y dF̃ (y)

where dF̃ = κw(y) dF (y). (2.6)

This can be attributed to Breckling and Chambers [13], who produce the same fact for a more
general family of estimators. Both the interpretation with respect to F and the same with respect
to F̃ will play a role in later sections. For the asymmetrically τ -weighted expectations operator
corresponding to any distribution F , we adopt the τ subscript for our notation

Eτ (Y ) =

∫
y κw(y) dF (y) =

∫
y dF̃ (y) = µτ (F ). (2.7)

We will use this notation4 extensively. The expectile operator Eτ (·) is clearly a special case of the
usual expectations operator EF (·) (and vice versa) and inherits all of its properties. In the case

3We say that the weights w(y) are proper if E(w(Y )) = 1. The weights κw(Y ) are proper by construction.
4The weighted expectation Eτ (Y ) can also be expressed as

µτ = Eτ (Y ) = E

[
|ψτ (Y − µτ )|

E (|ψτ (Y − µτ )|)
× Y

]
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where τ = .5, we have the usual expectations under F , so we suppress the subscript and simply
write E(·).

The sample expectile �tted values (predictor) for y has the usual GLS form

ŷτ = Xβ̂τ

= X(X′WX)−1X′Wy

= Pτy (2.8)

which is an asymmetrically weighted L2 projection of y onto the space spanned by X. The
matrix Pτ = X(X′WX)−1X′W is the weighted projection or �hat� matrix. We also obtain the
vector of residuals ε̂ = y − ŷ or

ε̂ = y − ŷ

=
(
I −X(X′WX)−1X′W

)
y

= Mτy (2.9)

where the matrix Mτ is the expectile annihilator matrix. The notation is standard and GLS-
type projections with this form are ubiquitous, but Pτ andMτ di�er slightly from their �symmetric�
counterparts. They are idempotent but not symmetric, thus they are not orthogonal projections
in the usual sense. Instead, a projection of this type is called an oblique projection [9, p. 165] [50,
p. 578]. Oblique projections are rarely discussed per se in econometrics. However, they have been
studied explicitly in other applied sciences, such as signal processing [10]. Some details regarding
Pτ andMτ are given in the appendix and several of the implications of their structure are discussed
in Section 6.

2.2 Example: Mexican Repatriation

In Figure 2 on the next page, the L1 quantiles of Koenker and Bassett [28] are compared to the
L2 quantiles of Newey and Powell [37]. The data for this example are drawn from the Mexican
repatriation during the great depression era of the 1930's. During that period of time, there was
a substantially hostile attitude in the southwest of the United States towards Mexican nationals
living north of the border. Organized labor and political groups sponsored, pushed, and sometimes
forced Mexicans and Mexican Americans to leave the U.S. and return to Mexico. As a result
of harassment and other targeted campaigns, approximately 1.3 million persons were repatriated
(returned to Mexico) during that episode [31]. See the book by Balderrama and Rodriguez [7] for
a detailed overview.

The data in the �gure are the Mexican repatriation intensity, de�ned as the proportional de-
crease in the number of Mexican nationals in a given municipality from 1930 to 1940, according
to the U.S. Census. Figure 2 on the following page plots the repatriation intensity relative to the
proportion of the population that were Mexican nationals in 1930 per locus. On the left, regression

where ψτ (y) = τ − I(y < 0), which is the derivative of Koenker and Bassett's �check� function ρτ (u) [28], [26,
p. 36]. The absolute value of ψτ is sometimes called the check function, see [8]. We have suppressed this notation

in order to reduce the reader's barrier to entry: our �proper� weights are given by κw(y) =
ψτ (y−µτ )

E(ψτ (Y−µτ ))
. In cases

where it is not necessary to normalize the weights, it su�ces to say that wi is proportional to (1 − τ) for negative
errors and τ otherwise.
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Figure 2: On the left, linear regression L1-quantiles. On the right, linear regression L2 quantiles.
Repatriation intensity is de�ned as the percentage decrease in population of Mexican nationals from
1930-40. The covariate is the proportion of the population that were Mexican nationals in 1930.

quantiles are shown. On the right, regression expectiles are shown. The general positive correlation
between repatriation (departures) and the proportion of Mexicans in 1930 is statistically signi�cant,
suggesting that repatriation or harassment campaigns were more intense in those localities. This
result can be found using Ordinary Least Squares (the red line on the right) or median regression
(the red line on the left).

The notable feature of the scatterplot in Figure 2 is the cone-shaped heteroscedasticity. The
variance of the repatriation variable increases with the proportion of Mexicans in 1930. Because the
location-scale is apparently quite reasonable in this example, we could take any L1 regression line
from the left and �nd a τ such that the L2 regression line on the right is the same asymptotically
(or vice versa). Waltrup, Sobotka, and Kneib have recently developed an e�ective method for doing
this [45] and Daouia et al. [16] have extended it. In this application, expectiles with the same subset
of τ 's are slightly closer together than quantiles, which is typical [27, 11]. The econometrician's
choice of estimator is dependent on what �nite-sample properties are desirable.

Importantly, the example in Figure 2 contains major economic results that cannot be found using
mean or median regression alone. The obvious result implied by the central regression estimates is
that symptoms of racial animus are experienced more profoundly in areas where the racial minority
is most present. However, higher (lower) quantiles of the conditional distribution correspond to
those areas where these e�ects are stronger (weaker), ceteris paribus. Compare the L1 quantile
regression coe�cients in Table 1 on the next page with the expectile regression coe�cients in
Table 2 on page 9.

Notably, the mean and median regression produce generally similar results with statistically
coe�cients of .34 and .36, respectively. Extending our survey to measures of non-central tendency,
we see larger coe�cients as τ increases and smaller coe�cients as τ decreases. Given that the e�ect
seems to be strongest at the top of the distribution, the obvious question is how severe that e�ect
may be in that part of the sample. The quantile line of best �t at τ = .9 is approximately co-
located with the expectile line of best �t at τ = .99 with coe�cients of approximately .65 and .64,
respectively. This indicates that the e�ect of the population demographics is approximately twice
as large near the maximum of the data as it is at the mean. Because the mean e�ect represents
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Quantile Regression Coe�cients
(1) (2) (3) (4) (5)

VARIABLES Intensity Intensity Intensity Intensity Intensity
τ = .005 .01 .05 .1 .3

Proportion of Mexicans -0.273 -0.168** 0.0154 0.240*** 0.364***
(0.258) (0.0661) (0.0904) (0.0327) (0.0230)

Constant -0.000517*** -0.000233*** -0.000153*** -3.86e-05*** 0
(7.80e-05) (3.81e-05) (2.09e-05) (1.02e-05) (4.97e-06)

(6) (7) (8) (9) (10)
VARIABLES Intensity Intensity Intensity Intensity Intensity
τ = .5 .7 .9 .95 .99

Proportion of Mexicans 0.364*** 0.500*** 0.651*** 0.726*** 0.926***
(0.0230) (0.0396) (0.0336) (0.0313) (0.118)

Constant 0 0 3.18e-05*** 4.68e-05*** 3.54e-05
(4.97e-06) (6.25e-06) (7.18e-06) (1.54e-05) (6.22e-05)

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1: Quantile Regression coe�cients for the regression of repatriation intensity on the pro-
portion of Mexicans in a given locale. Standard errors are the heteroscedasticity-robust sandwich
estimator given in Theorem 4.1 in [26]. The negative coe�cient at τ = .01 is weakly signi�cant.
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Expectile Regression Coe�cients
(1) (2) (3) (4) (5)

VARIABLES Intensity Intensity Intensity Intensity Intensity
τ = .001 .01 .05 .1 .3

Proportion of Mexicans -0.0673* -0.0697** 0.0577 0.138** 0.267***
(0.0376) (0.0308) (0.0604) (0.0538) (0.0355)

Constant -0.00333*** -0.000889*** -0.000357** -0.000225** -7.51e-05
(0.00100) (0.000320) (0.000145) (9.06e-05) (4.70e-05)

R-squared 0.077 0.064 0.031 0.171 0.524

(6) (7) (8) (9) (10)
VARIABLES Intensity Intensity Intensity Intensity Intensity
τ = .5 .7 .9 .95 .99

Proportion of Mexicans 0.340*** 0.409*** 0.507*** 0.550*** 0.640***
(0.0323) (0.0315) (0.0260) (0.0232) (0.0268)

Constant -1.43e-05 4.03e-05 0.000162** 0.000264*** 0.000447***
(4.06e-05) (4.85e-05) (6.45e-05) (7.19e-05) (0.000133)

R-squared 0.664 0.747 0.842 0.874 0.893
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 2: Expectile coe�cients from the regression of repatriation intensity on the proportion of
Mexicans in a given locale in 1930. The OLS estimate from this sample is .34, which is very
signi�cant. Close to the maximum of the distribution, the regression coe�cient reaches as high
as .64, which is nearly twice the OLS estimate. At the bottom of the distribution, the estimated
coe�cient turns negative and (at τ = .01) is statistically signi�cant. Standard errors are the
sandwich estimator of Newey and Powell with the degrees of freedom adjustment n

n−k .

9



an average of di�erent quantile e�ects (see the note by Subrahmanyam [42]) we can determine that
the result is driven more by these locations at the top of the distribution.

In sharp contrast, we see both quantiles and expectiles produce negative and statistically sig-
ni�cant coe�cients near the bottom of the distribution (τ = .05 for L1 quantiles and τ = .01 for
expectiles). This is arguably as large a result as the OLS coe�cient itself. The bottom of the
distribution corresponds to those �least racist� municipalities. Not only do we fail to observe Mex-
ican nationals �eeing those areas, we �nd statistically signi�cant evidence that their populations
are growing relative to other demographic groups. Thus it is possible that Mexican nationals are
moving from municipalities at the top of the distribution to municipalities at the bottom.

These generalized quantile regressions have the power to identify results that would otherwise
be missed. However, a major question is which estimator is �optimal� in some standard sense.
For example, it is obvious that the heteroscedasticity in this application would point towards a
generalized least squares estimator, rather than OLS, for the mean regression. This result can be
extended to expectiles. In that way, we will develop the BLUE for the generalized quantile family
in the next section. Similarly, we will show that the expectile (L2-quantile) has an interpretation
as an expected value under certain conditions and may be the optimal estimator of the mean under
other conditions. Other corollary results will follow.

3 Expectile (Generalized) Least Squares

In this section, we will derive the expectile regression in a modi�ed form of the classical Gauss-
Markov framework. For any general linear model, the estimated expectile regression coe�cients
have the form

β̂τ = (X′AX)−1X′Ay (3.1)

for some matrix A. This generalized least squares form is common in the literature. In the next two
subsections, we will show that the expectile regression estimator and its generalized counterpart
are BLUE under simple conditions. For clarity, we will refer to the expectile regression estimator in
equation 3.1 using whichever name indicates the classical estimator that would be produced in the
central case when τ = .5. Thus, the �Generalized� Expectile Regression or Expectile GLS nests the
GLS estimator when τ = .5. A Weighted Expectile Regression or Expectile WLS nests the classical
weighted least squares when τ = .5. The �ordinary� expectile regression of Newey and Powell [37]
nests Ordinary Least Squares when τ = .5. Otherwise, �Expectile Regression� refers to the concept
generally.

In the following subsections, we treat τ as known or assume that multiple τ are of interest, as
is the case when expectiles are being treated similarly to quantiles. In section 4, we consider the
possibility that a particular τ is optimal for speci�c model designs.

3.1 Expectile Gauss-Markov Assumptions

As in the previous section, we have a sample of data observations yi,xi for i = 1, ..., n. Denote the
column vector made from {yi}ni=1 as y and the matrix made from each x′i as X. The weights wi
and the asymmetric expectations operator Eτ are de�ned as in the previous section.

The relationship between the following four assumptions and the classical Gauss-Markov as-
sumptions is readily apparent: simply let τ = .5 and the expectile assumptions nest the classical
Gauss-Markov assumptions. We will address that relationship more thoroughly in Section 4. A
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notable result is that the �rst and third assumptions (linearity and full rank) are the same for
all expectiles, the second and fourth vary depending on which expectile is of interest. The fourth
(spherical variance-covariance) is usually not taken seriously: a more general heteroscedastic version
is given in Section 3.2.2.

The �rst assumption is obvious: the model for the τ th conditional expectile of yi given xi will
be linear.

Assumption 1: The model is linear.

yi = βτ,1xi,1 + ...+ βτ,kxi,k + εi

= x′iβτ + εi (3.2)

This buys us a convenient interpretation of each coe�cient as the partial derivative of the τ th

expectile of yi with respect to the corresponding covariate:

∂Eτ (yi)

∂xi,j
= βτ,j ∀j ∈ {1, ...k}.

See Stahlschmidt et al. [40] for some discussion regarding these �expectile treatment e�ects�.
Nonparametric regression models for expectiles are reasonably common in the literature, [48] but
are not part of the current subject matter.

Assumption 2: Weighted Strict Exogeneity:

Eτ (εi|X) = 0 or E(wiεi|X) = 0 ∀i ∈ {1, ..., n} . (3.3)

Then the weighted error term is orthogonal to the data X. This can be re-formulated, using
εi = yi − x′iβτ from equation 3.2, as

Eτ (yi|X) = x′iβτ or E(wiyi|X) = x′iβτE(wi|X) ∀i ∈ {1, ..., n} .

Of course, we can also simplify the latter term by requiring the E(wi|X) = 1, conforming to our
de�nition of �proper� weights in footnote 4.

You can also see that equation 3.3 implies some other trivial results. For instance,

Eτ (xijεi) = 0 or E(wixijεi) = 0 ∀i, j . (3.4)

This follows directly from the tower rule5:

Eτ (xijεi) = E(Eτ (xijεi|X)) (3.5)

= E(xijEτ (εi|X))

= 0.

5Alternatively, write
E(wixijεi) = E(E(wixijεi|X)) = E(xijE(wiεi|X)) = 0.

Note that the subscript τ appears only once on the right side of equation 3.5 because writing Eτ (Eτ (·)) would
imply applying the weights twice.
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The conditional moment in equation 3.3 also implies the value of the unconditional moment by
the tower rule:

Eτ (εi) = E(wiεi) = E(E(wiεi|X)) = 0.

This illustrates the recurring theme that expectile regression will conform, in most cases, to the
same set of mathematical properties that central L2 estimators, including the entire GMM family,
will posess. Next we present the third assumption.

Assumption 3: Full-Rank condition: The n× k matrix X has full column rank.

If Assumption 3 is violated, then the matrixX′WX will not be invertible and the expectile regression
coe�cients cannot be evaluated. Because rank(AB) ≤ min(rank(A), rank(B)), invertibility of
X′WX requires that the data matrix X has full rank. This is standard for ordinary least squares,
but in the expectile case full rank is also su�cient to ensure that X′WX is invertible. To show
that this is true, observe that a unique Moore-Penrose pseudoinverse (X′X)

−1
X′ exists for any

matrix X with full column rank. Then certainly X′X is invertible. Likewise, for τ ∈ (0, 1), the
matrix of expectile weights W is diagonal (symmetric, positive de�nite) and has a positive de�nite

square root W 1/2 with full rank. Then W 1/2X is the n×k matrix [W 1/2X]i,j = W
1/2
ii [X]i,j . If this

matrix is not of full rank, then there is some vector v ∈ Rk such that
∑k
j=1W

1/2
ii [X]i,jrj = 0 for

all i, which implies
∑k
j=1[X]i,jrj = 0 for all i, which is impossible because X has full rank. Then

W 1/2X has a unique Moore-Penrose pseudoinverse (X′WX)
−1

X′W 1/2 whenever X is of full rank,
and X′WX is invertible.

Assumption 3 is notable in the sense that it does not matter which expectile we are modelling:
the assumption either holds for all expectiles or it holds for none. Compare this to the major result
in Newey and Powell [37], where the τ th expectile of the distribution exists if and only if its �rst
moment exists. In addition, Assumption 3 requires that there are at least k observations; n ≥ k. If
n = k, then the equation

y = Xβτ

has an unique, �exact� solution for βτ = X−1y because X is square matrix with full rank (and
thus invertible). If n > k, then we might consider using the same Moore-Penrose pseudoinverse of

X, which is (X′X)
−1

X′ to obtain a solution: βτ = (X′X)
−1

X′y. The pseudoinverse of a full-rank
matrix is unique, but there are other matrices which can be used to �solve� a linear equation of
this type. They include (X′AX)

−1
X′A, with an in�nite number of possibilities for the choice of

A, including the expectile weights A = W . In that case, the mean regression is also the expectile
regression for every τ ∈ (0, 1). Because the case where n = k is uninteresting, we will restrict our
attention to the case where n > k and sample expectiles do not co-locate.

Any generalized inverse (X′AX)
−1

X′A can be used to produce an �estimate� of βτ . We will
produce a unique choice set from this family in sections 7 and 3.2. To do this, we make one more
assumption about the variance of our model.

Assumption 4: �Spherical� error variance or Asymmetric Homoscedasticity:

Eτ (ε2i |X,W ) = κν2 or E(wiε
2
i |X,W ) = ν2 ∀i . (3.6)

and
Eτ (εiεj |X,W ) = 0 or E(wiεiεj |X,W ) = 0 ∀i 6= j . (3.7)
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These statements may also be written as E(Wεε′|X,W ) = ν2In. Assumption 4 implies that
each εi has the same weighted variance, i.e. the conditional variance (given that the error term is
positive or negative) varies by an a priori known ratio6. It also implies that each pair of distinct
εi, εj are uncorrelated. This is �spherical� variance in the sense of a sphere de�ned under a weighted
distance function. It is useful also to note that the weighted covariance in equation 3.7 uses weights
which vary depending on εi; though εi and εj may be reversed and the statement remains true.

Importantly, the assumption that E(Wεε′) = ν2In implies that the ratio of variance for positive
errors to variance for negative errors is 1−τ

τ . Because the τ th expectile is not the mean, the
distribution of residuals is �skew� in precisely this way and is not zero on average. However, this is
not the usual de�nition of skewness as we have not employed any third-moment information.

As with the previous two assumptions, comparisons to the standard symmetric variance are
interesting and some of the usual shorthand formulas remain true in this environment. For instance,
we can de�ne the weighted variance of εi given X as

WV ar(εi|X) := Eτ
(
(εi − Eτ (εi|X))2|X

)
(3.8)

= Eτ
(
ε2i − 2εiEτ (εi|X) + Eτ (εi|X)2|X

)
= Eτ (ε2i |X)− Eτ (εi|X)2.

This is similar to the usual expression given for variance; V ar(εi|X) = E(ε2i |X)−E(εi|X)2, with
the addition of weights i.e. with the de�nition of variance modi�ed to use F̃ in place of the original
distribution F . Also, with weighted strict exogeneity (Assumption 2) we have Eτ (εi|X)2 = 0, so
WV ar(εi|X) = Eτ (ε2i |X). For research based on the standard case where τ = .5, these two small
results are ubiquitous. See section 6 for further discussion of the di�ering de�nitions of �variance�
available in this context.

Using Assumptions 1-4, we can motivate the construction of expectile regression and determine
whether it is the �best� linear unbiased estimator in the sense of having the minimum possible
variance. We can also collapse these assumptions to represent the usual �rst four Gauss-Markov
assumptions (for Ordinary Least Squares).

Proposition 1. Let the weights wi be constant and proper such that W = In uniquely. Then
assumptions 1-4 are the Gauss-Markov assumptions.

We allow this proposition to serve as our statement of the Gauss-Markov assumptions. The
proposition is actually true even when weights are constant but improper (not equal to one), but
the previous statements simplify in the most elegant manner when wi = 1. Under these four
assumptions, the following is a �standard� result.

Proposition 2. Let assumptions 1-4 be correct. Then the expectile regression estimator β̂τ =
(X′WX)−1X′Wy has the following properties:

E(β̂τ |X,W ) = βτ

V ar(β̂τ |X,W ) = ν2 (X′WX)
−1

6To assist the reader, we would like to draw attention to the relationship between ν2 and σ2 = E(ε2i ). Clearly,
they are the same if the weights are exactly one for all observations (ordinary least squares). A common consistent
estimator for the weighted variance parameter E(wiε

2
i ) in weighted least squares problems is 1

n−k
∑n
i=1 wiε̂i

2, which

we will recommend as an estimator for ν2 when the variance of β̂τ or the predictor is of interest. In section 6 we will
discuss estimators for σ2 = E(ε2i ), which is appropriate when the variance of the residual (or of yi) is of interest.
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Thus, the estimator is unbiased with variance ν2 (X′WX)
−1
. A full derivation of this result is

given in Appendix A1, but it is identical to the standard result for GLS estimators. See [20], for

instance. Next, we will show that the estimator β̂τ is the BLUE.

3.2 The �Best� Linear Unbiased Estimator

We say that the �Best� Linear Unbiased Estimator (BLUE) is the linear unbiased estimator with
the least variance. The Gauss-Markov theorem presented by Markov [34] states that ordinary least
squares is the BLUE under assumptions 1-4 with τ = .5. This result is typically extended to the
Generalized Least Squares estimator (GLS) of Aitken [1] under heteroscedasticity.

3.2.1 With Spherical Variance-Covariance

We will show that any linear and unbiased estimator under assumptions 1-4 for τ ∈ (0, 1) will have

at least as much variance as β̂τ = (X′WX)
−1

X′Wy. We may write any such linear estimator as
β̃τ = Cy for some choice of matrix C, potentially a function of X,W . For our estimatorβ̃τ , we have

E(β̃τ |X,W ) = E(Cy|X,W )

= E(CXβτ + Cε|X,W )

= E(CXβτ |X,W )︸ ︷︷ ︸
CXβτ

+E(Cε|X,W )︸ ︷︷ ︸
0

= CXβτ .

Here, E(Cε|X,W ) is zero because Cε is an unbiased linear estimator of the τ th expectile of ε,
which is uniquely zero. But the fact that β̃τ is unbiased also implies CXβτ = βτ , which requires
that the k × k matrix CX = I. Also, we can always write C = D + (X′WX)

−1
X′W for some D.

Doing this, we see that

I = CX = DX + (X′WX)
−1

X′WX (3.9)

= DX + I.

Then DX is uniquely zero. Now write the conditional variance of β̃τ = Cy using this same
decomposition:

V ar(β̃τ |X,W ) = E
(

(β̃τ − βτ )(β̃τ − βτ )′|X,W
)

= E (Cεε′C ′|X,W )

= CE (εε′|X,W )C ′

=
(
D + (X′WX)

−1
X′W

)
ν2W−1

(
D + (X′WX)

−1
X′W

)′
= ν2

(
DW−1D′ + (X′WX)

−1
+DW−1WX (X′WX)

−1
+ (X′WX)

−1
X′WW−1D

)
= ν2

(
DW−1D′ + (X′WX)

−1
)
. (3.10)
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This follows using the fact that DX = 0. But the matrix DW−1D′ is positive de�nite, so

V ar(β̃τ |X,W ) = ν2
(
DW−1D′ + (X′WX)

−1
)

≥ ν2 (X′WX)
−1

= V ar(β̂τ |X,W ).

That is, any unbiased linear estimator has at least as much variance as β̂τ . We have just proven
the proposition below.

Proposition 3. Under assumptions 1 through 4, the expectile regression estimator β̂τ = (X′WX)
−1

X′Wy
is the best linear unbiased estimator in the sense that it has the least variance.

Next, we will ask whether the estimator β̂τ is useful to construct a predictor of y or of any
(known) linear function of y; say Ay for A possibly but not necessarily In. The τ

th expectile of Ay
given X is

Eτ (Ay|X,W ) = Eτ (AXβτ +Aε|X)

= Eτ (AXβτ |X) + Eτ (Aε|X)︸ ︷︷ ︸
0

= AXβτ .

Clearly, we can construct a predictor of Ay using any estimate we may have for βτ . If we use
the unbiased estimator β̂τ = (X′WX)

−1
X′Wy, we have

E(Aŷ|X,W ) = E(AXβ̂τ |X,W )

= AXβτ

Thus, Aŷ is an unbiased predictor of the τ th expectile of Ay. Its variance is given by

V ar(Aŷ|X,W ) = E ((Aŷ − E(Aŷ|X,W ))(Aŷ − E(Aŷ|X,W ))′|X,W )

= E ((Aŷ −AXβτ )(Aŷ −AXβτ )′|X,W )

= AXE
(

(β̂τ − βτ )(β̂τ − βτ )′|X,W
)
X′A′

= ν2AX (X′WX)
−1

X′A′.

For any other unbiased estimator β̃τ as given before, we have the predictor Aỹ = AXβ̃τ and
E(Aỹ|X,W ) = AXβτ . But the variance of Aỹ is

V ar(Aỹ|X,W ) = E ((Aỹ − E(Aỹ|X,W ))(Aỹ − E(Aỹ|X,W ))′|X,W )

= AXE
(

(β̃τ − βτ )(β̃τ − βτ )′|X,W
)
X′A′

= AX
(
D + (X′WX)

−1
X′W

)
ν2W−1

(
D + (X′WX)

−1
X′W

)′
X′A′.

= ν2
(
AXDW−1D′X′A′ +AX (X′WX)

−1
X′A′

)
≥ ν2AX (X′WX)

−1
X′A′ = V ar(Aŷ|X,W )

Again, the positive-de�nite matrix AXDW−1D′X′A′ shows that our variance is at least as great
as before. By extension, we see that AXβ̂τ is the best linear predictor of AXβτ for a linear function
B = (AX) of βτ . This proves the following proposition.
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Proposition 4. Under assumptions 1 through 4, AXβ̂τ is the best linear unbiased predictor of Ay,
given X.

In particular, we might note that A could be any one of the elementary basis vectors such that
Ay = yi and AXβ = x′iβτ . Then we have also proven the next proposition.

Proposition 5. Under assumptions 1 through 4, x′iβ̂τ is the best linear unbiased predictor of yi.

And, lastly, proposition 4 also implies proposition 3. Let A be (X′WX)
−1

X′W ; such that
AX = Ik. The result follows.

3.2.2 With Heteroscedasticity

The typical approach to �BLUE� regression under heteroscedasticity is to look for a transformation
of the data such that the Gauss-Markov assumptions are applicable. Let assumptions 1 through 3
hold, but let E(W 1/2εε′W 1/2|X,W ) 6= ν2In. Instead, let

7

E(εε′|X,W ) = ν2Σ = ν2W−1/2ΩW−1/2 (3.11)

for some Σ and some corresponding Ω, possibly a function of X. In the case where Ω is diagonal
(implied by Assumption 0) we have E(εε′|X,W ) = ν2W−1Ω which obviously nests assumption 4
if Ω = In. Otherwise, we have a symmetric positive de�nite variance of the residual vector with
τ

1−τ times the variance for negative errors as for positive errors, but some additional covariance
structure. This is the same as the interpretation in the previous subsection: the distribution of
errors remains �skew�.

Because Σ is symmetric and positive de�nite, we have some invertible matrix V such that V ′V =
W 1/2Ω−1W 1/2 = Σ−1. Without loss of generality, suppose that V is the Cholesky decomposition
of Σ−1. In the usual fashion, left-multiply the entire model by V and say

ỹ = X̃βτ + ε̃ ≡ V y = VXβτ + V ε

It is trivial to show that assumptions 1 and 3 apply to this transformed model: clearly it is
linear, X̃ has full rank. But also,

E(ε̃ε̃′|X̃,W ) = E(V εε′V ′|X,W )

= V E(εε′|X,W )V ′

= ν2V ΣV ′

= ν2In

Because we have already incorporated the expectile weights in equation 3.11, this has become
a perfectly standard GLS problem. We have

β̂τ,GLS =
(
X̃′X̃

)−1
X̃′ỹ

= (X′V ′VX)
−1

X′V ′V y

=
(
X′Σ−1X

)−1
X′Σ−1y

= βτ +
(
X′Σ−1X

)−1
X′Σ−1ε

7Notice E(wiε
2
i |X,W ) = ν2Ωii; the elements of Ω are proportional to the expected squared error.
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where, because the sequence {Y,X} is independent,

E
((

X′Σ−1X
)−1

X′Σ−1ε|X,W
)

=
(
X′Σ−1X

)−1
X′E

(
W 1/2Ω−1W 1/2ε|X,W

)
=
(
X′Σ−1X

)−1
X′Ω−1E (Wε|X,W )︸ ︷︷ ︸

0

.

Then the expectile GLS estimator is unbiased. It remains to be shown whether this estimator
has the lowest possible variance for the class of linear estimators. Obviously the variance of the

estimator itself is ν2
(
X′Σ−1X

)−1
.

The proof is similar to the example in the previous section. Because any unbiased linear esti-
mator can be written β̃τ = Cy where CX = In and C = D +

(
X′Σ−1X

)
X′Σ−1, DX = 0, we can

write

V ar(Cy|X,W ) = V ar(
(
(D +

(
X′Σ−1X

)
X′Σ−1)y|X,W

)
= ν2

(
D +

(
X′Σ−1X

)−1
X′Σ−1

)
Σ
(
D +

(
X′Σ−1X

)−1
X′Σ−1

)
= ν2DΣD′ + ν2

(
X′Σ−1X

)−1
X′Σ−1ΣΣ−1X

(
X′Σ−1X

)−1
= ν2DΣD′ + ν2

(
X′Σ−1X

)−1
≥ ν2

(
X′Σ−1X

)−1
= V ar( ˆβτ,GLS) (3.12)

Thus we have shown that the GLS estimator is the �best� linear unbiased estimator for βτ in
the sense of minimum variance. This serves as a proof of the following proposition.

Proposition 6. Let assumptions 1-3 hold and let E(εε′|X,W ) = ν2Σ = ν2W−1/2ΩW−1/2 for some
known symmetric positive de�nite Ω, possibly a function of X. Then the expectile GLS estimator

ˆβτ,GLS =
(
X′Σ−1X

)−1
X′Σ−1y (3.13)

is the �best� linear unbiased estimator in the sense that is has the minimum variance in that class
of estimators.

We will explore this result further in the next part. Obviously, we have the corollary result that
the linear predictor AXβ̂τ,GLS is the best unbiased linear predictor of Ay and that x′iβ̂τ,GLS is the
best unbiased linear predictor of yi. We leave that proof to the reader.

To conclude this section, we restate two points. The �ordinary� expectile regression is BLUE
under an asymmetric spherical variance-covariance assumption where the ratio of positive to neg-
ative variance is 1−τ

τ . The �generalized� expectile regression nesting the estimator of Aitken [1] is
BLUE under the assumption of heteroscedasticity of known form with the same ratio of variance
for positive and negative errors.

4 Expectiles in Misspeci�ed OLS Regressions

As stated in Proposition 1, the four expectile assumptions nest the four Gauss-Markov assumptions
when τ = .5. We have shown that the expectile regression coe�cients β̂τ = (X′WX)

−1
X′Wy
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are the best linear unbiased estimator under those four expectile assumptions, which also implies
that OLS is the BLUE when τ = .5. When heteroscedasticity is present, the generalized expectile
regression is the BLUE.

However, we can also show that the (generalized) expectile regression coe�cients are the BLUE
when we have a standard model, with the four traditional Gauss-Markov assumptions, but these
assumptions are violated in a particular nonstandard way. In the following three sections, we show
three separate cases where Gauss-Markov assumptions are violated and a generalized expectile
regression is the BLUE.

First, let us restate the Gauss-Markov four assumptions for the context of a typical mean
regression. Because we are not estimating the τ th expectile speci�cally, we drop the τ subscript
from β.

G-M Assumption 1: The model is linear.

yi = β1xi,1 + ...+ βkxi,k + εi

= x′iβ + εi (4.1)

G-M Assumption 2: Strict Exogeneity:

E(εi|X) = 0 or ∀i ∈ {1, ..., n} . (4.2)

G-M Assumption 3: Full Rank: X is of full column rank i.e. rank(X) = k.

G-M Assumption 4: Spherical variance-covariance

E(εε′|X) = σ2In. (4.3)

We have shown that the �rst and third assumptions do not change depending on which expectile
we are interested in. We have shown that the estimator is usable and has known variance when the
fourth assumption is violated (see equation 7.4). But the second assumption�strict exogeneity�will
be violated in the following three examples. If the fourth is also violated, we may replace the
ordinary expectile regression with the generalized expectile regression without loss of generality.

4.1 Expectiles: Relaxed Exogeneity

To step away from the usual mean regression, relax assumption 2 in the smallest way possible:

E(εi|X) = c ∀i. (4.4)

We have merely altered our assumption so that the average error term is not zero, but some
other constant c ∈ R. This seems odd at �rst, because the mean regression will produce residuals
with mean zero by design. But there are reasons why nonzero residuals are sometimes desiarable.
Naturally, the mean regression line is not the only line of interest. This is especially true in
heteroscedastic models, where we see that the rest of the regression coe�cients β2, ...βk vary with
the estimated constant. This was shown in Figure 2 on page 7. Similarly, the regression residuals
may be nonzero on average after a data trimming procedure to remove data from either the right
or left of the data [24]. This is a well-known procedure to increase robustness of our estimators, but
it also changes the mean of εi by a potentially large amount. Models with nonzero residual means

18



occur also in survival analysis. Su�ce it to say that there are scenarios where we wish to include a
constant in our regression and keep the error terms di�erent from zero on average.

This is a major motivation for quantile-type methods: we are interested in regression lines
that pass through di�erent levels of the dependent variable, i.e. we wish to estimate models with
multiple di�erent c in equation 4.4. The non-zero exogeneity condition implies the following about
our model:

Proposition 7. Let Assumptions 1,3,4 hold, let E(εi|X) = c with c ∈ R a (�nite) constant, and
0 < Pr(εi ≥ 0) < 1. Then there exist expectile weights wi of the form

wi =

{
τ if εi ≥ 0

1− τ if εi < 0

such that E(wiεi|X) = 0, for some τ ∈ [0, 1]

Proof. We know that

E(εi|X) = E(εi|X, εi ≥ 0) Pr(εi ≥ 0) + E(εi|X, εi < 0) Pr(εi < 0) (4.5)

= c

So

E(wiεi|X) = τE(εi|X, εi ≥ 0) Pr(εi ≥ 0) + (1− τ)E(εi|X, εi < 0) Pr(εi < 0)

= E(εi|X)− (1− τ)E(εi|X, εi ≥ 0) Pr(εi ≥ 0)− τE(εi|X, εi < 0) Pr(εi < 0)

= c− (1− τ)E(εi|X, εi ≥ 0) Pr(εi ≥ 0)− τE(εi|X, εi < 0) Pr(εi < 0). (4.6)

The last expression above will be zero if

c = (1− τ)E(εi|X, εi ≥ 0) Pr(εi ≥ 0) + τE(εi|X, εi < 0) Pr(εi < 0)

= E(εi|X, εi ≥ 0) Pr(εi ≥ 0) + τ (E(εi|X, εi < 0) Pr(εi < 0)− E(εi|X, εi ≥ 0) Pr(εi ≥ 0)) ,

so the unique τ that satis�es this condition must be

τ =
E(εi|X, εi ≥ 0) Pr(εi ≥ 0)− c

E(εi|X, εi ≥ 0) Pr(εi ≥ 0)− E(εi|X, εi < 0) Pr(εi < 0)
. (4.7)

But, because of equation 4.5, we can replace c and write τ as

τ =
−E(εi|X, εi < 0) Pr(εi < 0)

E(εi|X, εi ≥ 0) Pr(εi ≥ 0)− E(εi|X, εi < 0) Pr(εi < 0)
. (4.8)

Clearly this has the form a
a+b for positive a, b; therefore τ must be in (0, 1).

The proposition above leads to an interesting outcome. If strict exogeneity fails as in equation 4.4
on the preceding page, and E(εi|X) = c, then there must be a τ ∈ (0, 1) such that expectile weighted
exogeneity holds8.

E(εi|X) 6= 0, but Eτ (εi|X) = E(wiεi|X) = 0. (4.9)

8This, as in the proposition, excludes the degenerate case where all εi are positive or that where they are all
negative. That is implied by the condition 0 < Pr(εi ≥ 0) < 1. Obviously, there are few examples where the desired
regression line is outside the range of the data as implied by these two cases.
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Obviously, we �nd that the OLS estimator is not BLUE in this case�it is biased. However, there
is a τ ∈ (0, 1) (the τ in equation 4.8) such that the τ th expectile regression estimator is unbiased.
These are the following two propositions.

Proposition 8. Let Gauss-Markov assumptions 1,3,4 hold and E(εi|X) = c for all i = 1, ..., n.
The OLS estimator is biased if c 6= 0.

Proof. The proof is obvious. From the de�nition, we have

E(β̂OLS |X) = E((X′X)
−1

X′y|X)

= E((X′X)
−1

X′(Xβ + ε)|X)

= (X′X)
−1

X′Xβ + (X′X)
−1

X′E(ε|X)

= β + (X′X)
−1

X′1nc (4.10)

and for c 6= 0, the latter term is not zero unless X = 0n×k, which violates Assumption 3.

However, the β̂τ = (X′WX)
−1

X′Wy with expectile weights given by τ in equation 4.7 is
unbiased. This follows from the fact that Eτ (εi|X) = 0 as above, and the proof is the same as that
given in equation 7.3 on page 49. We have the following propostion.

Proposition 9. Let Gauss-Markov assumptions 1,3,4 hold and E(εi|X) = c. Then the expectile

regression estimator β̂τ = (X′WX)
−1

X′Wy with τ given in equation 4.8 is an unbiased estimator
of β.

Because β̂τ = (X′WX)
−1

X′Wy is unbiased, the variance is identical to that given in equa-
tion 7.4 on page 49 for general E(εε′|X,W ) = Σ. With Expectile Assumption 4 in place, E(Wεε′|X,W ) =

ν2In and the variance of β̂τ is

V ar(β̂τ |X,W ) = E
(

(β̂τ − βτ )(β̂τ − βτ )′|X,W
)

= (X′WX)
−1

X′E (Wεε′|X,W )WX (X′WX)
−1

= ν2 (X′WX)
−1
. (4.11)

Naturally, this extends to predictors of AXβ. The OLS predictor is biased, but the expectile
predictor AXβ̂τ is unbiased. We may alter assumption 4 (in the proposition below) to develop
a more robust sandwich variance or to use the GLS estimator from the previous section. Either
way, we have shown that the expectile is the natural generalization of the mean regression to a
non-central regression design implied by of equation 4.4. The fourth Gauss-Markov assumption
here is a special case of the fourth expectile assumption, as in equation 3.11 on page 16, which
leaves the expectile GLS estimator as the BLUE.

Proposition 10. Let Gauss-Markov assumptions 1,3 hold. Let E(εi|X) = c, and let E(εε′|X,W ) =
ν2Σ = ν2W−1/2ΩW−1/2 for some diagonal positive de�nite Ω. Then the expectile regression esti-

mator β̂τ =
(
X′Σ−1X

)−1
X′Σ−1y with τ given in equation 4.8 is the best linear unbiased estimator

of β.

The proof in section 3.2.2 on page 16 is applicable because Eτ (εi|X) = 0. Speci�cally, equation
3.12 shows that this estimator must be the BLUE.
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4.2 Expectiles for Subsample Contingency Analysis

A major overarching theme for expectile regression methods is the idea that heterogeneity exists
within the data. This is true, at the very least, because the error terms εi are not uniquely zero
and not all observations are �alike�. It is possible that the unknown and unobservable conditional
distributions of ε′is vary. The source of these unpredictable innovations εi is usually attributed to
omitted variables, neglected complexity in the �true� model, or some other lack of understanding
as to how yi came into being. The underlying factors are of interest, but di�cult to analyze.

For subsamples whose εi's are not identical in distribution to the overall sample distribution, we
may improve prediction by using tailored estimators�some form of contingency analysis. Suppose
that the OLS model is not misspeci�ed and Gauss-Markov assumptions 1-4 (or 1-3) are valid. In that
case, OLS (or GLS) is BLUE per all the usual arguments. But it is not strictly true that OLS is the
best estimator or produces the best predictor for all subsamples, given some additional information.
We may construct contingency predictors and contingency estimators based on information beyond
what is contained in y and X. Expectiles are especially useful for this purpose.

Under Gauss-Markov assumptions 1-4, it is well known that

E(β̂OLS |X) = β

V ar(β̂OLS |X) = σ2(X′X)−1. (4.12)

Supposing we have a vector of covariates xi, real or hypothetical, and we wish to predict yi, we
have the OLS predictor x′iβ̂OLS with variance

V ar(x′iβ̂OLS |X) = x′iV ar(β̂OLS |X)xi

= σ2x′i(X
′X)−1x′i. (4.13)

This is also the best linear unbiased predictor of yi. This is proven in the usual way by supposing
that there is some other unbiased linear estimator β̃ = Cy with C = D + (X′X)−1X′ and DX =
0and noticing that the predictor x′iβ̃ has variance

V ar(x′iβ̃|X) = x′iV ar(β̃|X)xi

= x′iC(σ2In)C ′xi

= σ2x′i
(
D + (X′X)−1X′

) (
D + (X′X)−1X′

)′
xi

= σ2x′i
(
D′D + (X′X)−1

)
xi

≥ V ar(x′iβ̂OLS |X) (4.14)

which is merely a modi�ed case of the proof in equation 3.10. However, if we know that a
particular observation with covariates z′ has α 6= 1 times the usual odds of a positive error term
ε∗ ≥ 0, relative to the unconditional distribution9 of εi,

Pr(ε∗ ≥ 0)

Pr(ε∗ < 0)
= α

Pr(εi ≥ 0)

Pr(εi < 0)
(4.15)

9Both in-sample and out-of-sample prediction typically assume that the distribution of errors for the predicted
observations is similar to that of the data. Relaxing that assumption can be achieved in a variety of ways, including
the simple way given here.
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and we do not change the shape of the conditional distribution if the residual is positive or
negative, then we have cause to doubt the predictor z′β̂OLS . This new information about the error
term violates two Gauss-Markov assumptions: strict exogeneity and spherical variance (assumptions

2 and 4)10, at least for the coe�cients β̂OLS , which must therefore be biased. Is there a di�erent
set of coe�cients we should consider?

To improve our estimator and our predictor, we can incorporate the new information in the
following way.

E(ε∗|z,X) = E(ε∗|z,X, ε∗ ≥ 0) Pr(ε∗ ≥ 0) + E(ε∗|z,X, εi < 0) Pr(ε∗ < 0)

= E(ε∗|z,X, ε∗ ≥ 0) Pr(εi ≥ 0)× αPr(ε∗ < 0)

Pr(εi < 0)

+ E(ε∗|z,X, εi < 0) Pr(εi < 0)× 1

α

Pr(ε∗ ≥ 0)

Pr(εi ≥ 0)

= E(ε∗|z,X, ε∗ ≥ 0)× τ + E(ε∗|z,X, εi < 0)× 1− τ (4.16)

for some11 τ ∈ (0, 1). But clearly12 this is Eτ (ε∗|z,X) or E(w∗ε∗|z,X) with proper expectile
weights. We may produce an unbiased estimator based on this information by using the sample
moment, for instance. This is the same moment condition in equation 7.1 and leads to the usual
expectile regression estimator. We know that E(w∗ε∗|z,X) = 0 must hold for all possible z and,
thus, it holds for all xi, implying E(wiεi|X,W ) for all i in 1, ..., n. The same condition must be
true for any other unbiased estimator.

Because any unbiased estimator must elicit the τ th expectile of the observable distribution,
we may �nd the predictor with the lowest variance by minimize the expression for variance di-
rectly. Following the fact that Eτ (y|X) = Xβτ , any unbiased linear predictor z′β̃ has Eτ (z′β̃|X) =

10Strict exogeneity is violated by construction. If the distribution of εi is F , then the distribution of the residual
ε∗ is the F̃ from equation 2.6 with τ

1−τ = α (their de�nitions are the same). Let τ > .5 without loss of generality.

E(εi|X) = E(wiεi|X) = 0 implies

.5E(εiI(εi ≥ 0)|X) + .5E(εiI(εi < 0)|X) = τE(εiI(εi ≥ 0)|X) + (1− τ)E(εiI(εi < 0)|X) = 0,

so, subtracting leaves:

(.5− τ)E(εiI(ε ≥ 0)|X)︸ ︷︷ ︸
<0

+ (.5− 1 + τ)E(εiI(εi < 0)|X)︸ ︷︷ ︸
<0

= 0

which is impossible so long as εi is not uniquely zero. The variance of a vector of these atypical observations
may still be spherical, but the coe�cient σ2 must change because we have proven that the OLS predictor has the
minimum possible variance! Notice that this also implies the condition in equation 4.4.

11A straightforward calculation shows that τ
1−τ = α. For a speci�c, known contingency, we may use a speci�c τ

in equation 4.16. More generally, it is reasonable to perform the estimation using many di�erent τ in order to survey
the full spectrum of possible variation.

12The weights in equation 4.16 add to one because, as seen previously, they are equal to Pr(ε∗ ≥ 0) and Pr(ε∗ < 0),
respectively.
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Eτ (z′Cy|X) = z′CXβτ = z′βτ . The variance
13 of the unbiased predictor is

V ar(z′β̃|X,W ) = E
(

(z′β̃ − Eτ (z′β̃|X,W ))2|X,W
)

(4.17)

= z′CE ((y −Xβτ )(y −Xβτ )′|X,W )C ′z

= ν2z′CΣC ′z

where ν2Σ = ν2W−1/2ΩW−1/2 denotes E(εε′|X,W ) as before. This is constant with respect to
the choice of unbiased estimator. Then we can minimize the variance, subject to unbiasedness of
the estimator, by constrained optimization. Writing the Lagrangian below,

L(z′C) =
1

2
z′CΣC ′z + λ′(X ′C ′z− z) (4.18)

minimize with respect to z′C:

∂L(z′C)

L(z′C)
= z′CΣ + λ′X′ = 0 (4.19)

And the �rst-order condition with respect to λ leaves CX − I = 0. Together, these imply

X′Σ−1Xλ = X′C ′z

=⇒ λ =
(
X′Σ−1X

)−1
z (4.20)

and

ΣC ′z = Xλ = X
(
X′Σ−1X

)−1
z

=⇒ C ′ = Σ−1X
(
X′Σ−1X

)−1
(4.21)

Thus, the best linear unbiased predictor z′β̃τ makes use of the GLS-type estimator

β̂τ,GLS = Cy =
(
X′Σ−1X

)−1
X′Σ−1y (4.22)

where ν2Σ = E ((y −Xβτ )(y −Xβτ )′|X,W ). Under the ideal conditions such as in Expectile
Assumption 4, E ((y −Xβτ )(y −Xβτ )′|X,W ) = ν2W−1, we have the usual expectile estimator

β̂τ = Cy = (X′WX)
−1

X′Wy. (4.23)

But this need not be the case. We have proven the following proposition.

Proposition 11. Let Gauss-Markov assumptions 1-3 hold for the data y,X. For a given observa-
tion with covariates z and an atypical residual distribution as in equation 4.15, the optimal linear

predictor is z′β̃τ where β̃τ is the GLS-type expectile estimator, β̂τ,GLS =
(
X′Σ−1X

)−1
X′Σ−1y,

ν2Σ = E
(
(y −Xβτ ) (y −Xβτ )

′ |X,W
)
.

13The variance of the predictor in equation 4.17 is obtained using the real distribution of data, so the �rst expecta-
tion operator is not weighted. But we want the predicto to be unbiased under the alternative distribution of errors,
which makes the second expectations operator weighted.
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In this case, we can also show that the best linear unbiased estimator of βτ is β̂τ,GLS .

Proposition 12. Let Gauss-Markov assumptions 1-3 hold for the data y,X. For any observation
with a misspeci�ed residual distribution as in equation 4.15, the best linear unbiased estimator of

the coe�cient vector βτ is β̂τ,GLS =
(
X′Σ−1X

)−1
X′Σ−1y, ν2Σ = V ar (y −Xβτ |X,W ).

The proof is simple. We have already shown that unbiasedness requires the predictor to use an
unbiased estimator for βτ and that the optimal linear predictor is z′β̂τ,GLS for any z, so it must
hold in particular when z is an elementary basis vector and thus the optimal linear predictor of [βτ ]j
is [β̂τ,GLS ]j for any j in 1, ..., k. A proof that β̂τ,GLS has the minimum variance of any unbiased
estimator for βτ is given in equation 3.12. Under propositions 10-11, the expectile coe�cients βτ
retain the interpretation as partial derivatives of the expected value of the data with respect to zi.
That is, for the atypical observation y∗,

∂E(y∗)

∂zj
= βτ,j ∀j ∈ {1, ...k}. (4.24)

and the expectile coe�cients β̂τ,GLS are the optimal estimators of these marginal e�ects for the
atypical observation.

4.3 Expectiles for Missing Data

Similar reasoning is applicable when data are missing not-at-random, but asymmetrically. Suppose
that the �true� data generating process y∗i = x∗i β+ ε∗i has an unknown distribution of errors F̃ as in
equation 2.6, but the data is not perfectly observed and observations are missing. If we only know
that positive error terms ε∗ ≥ 0 are α times as likely to go missing as negative error terms, we have

Pr(εi ≥ 0)

Pr(εi < 0)
=

1

α

Pr(ε∗ ≥ 0)

Pr(ε∗ < 0)
(4.25)

where the observed data have 1
α times as many positive error terms. Clearly, this is the same

as equation 4.15. So we can incorporate this information as in equation 4.16 to produce a useful
estimator. If E(ε∗|X∗) = 0 for the true data generating process but equation 4.25 is true for the
observed data, then E(wiεi|X) = 0 is true for the sample as in equation 4.16. Then we may solve
for the optimal estimator by the method in the previous section.

Proposition 13. Let Gauss-Markov assumptions 1-3 hold for the true data generating process of
y∗,X∗. For data y,X with missing observations as in 4.25, the best linear unbiased estimator for

the true DGP is the GLS expectile estimator, β̂τ,GLS =
(
X′Σ−1X

)−1
X′Σ−1y, ν2Σ = E(εε′|X,W ).

Proof. Exactly the same as before. There is some τ ∈ (0, 1) such that Eτ (εi|X) = 0. This is the
same as the proof in equation 4.16. Then any unbiased linear estimator can be written β̃ = Cy with
Eτ (β̃|X) = Xβτ , where βτ is the true τ th expectile coe�cient vector for the observed data. See

equation 3.12 for a proof that β̂τ,GLS is the BLUE in this class of estimators. Alternately, we might
characterise this example as the same as in Section 4.2 on page 21, except with the caveat that every
observation comes from the same atypical distribution. Then the same proofs are applicable.

The choice of the optimal linear predictor for some covariates z depends on whether we are
interested in data before or after observations go missing. If we are interested in the observed
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data only, then OLS is appropriate. If we are interested in prediction from the underlying data
generating process, is is optimal to use the GLS expectile predictor z′β̂τ,GLS . The corresponding
proposition and proof are below.

Proposition 14. Let Gauss-Markov assumptions 1-3 hold for the true data generating process of
y∗,X∗, with observations missing as in 4.25. For an observation with covariates z, the best linear

unbiased predictor for the true data generating process is z′β̂τ,GLS with β̂τ,GLS =
(
X′Σ−1X

)−1
X′Σ−1y,

ν2Σ = E(εε′|X,W ).

Proof. As before, we have an unbiased linear predictor given by z′Cy with E(z′Cy|X,W ) = z′βτ .
The variance of any such predictor is

V ar(z′Cy|X,W ) = z′V ar (Cy − CXβτ |X,W ) z

= z′
(
D +

(
X′Σ−1X

)−1
X′Σ−1

)
ν2Σ

(
D +

(
X′Σ−1X

)−1
X′Σ−1

)
z

= ν2z′DΣD′z + ν2z′
(
X′Σ−1X

)−1
z

≥ ν2z′
(
X′Σ−1X

)−1
z = V ar(z′β̂τ,GLS |X,W ). (4.26)

Importantly, other asymmetric model designs (frontier regression, for instance) may motivate
the use of asymmetric weights as in this section and the previous section. In such cases, the design
of the estimator and its optimality can be shown using the similar principles.

4.4 Example: Mortgage Applications

To illustrate the value of the ordinary expectile regression and its GLS counterpart, we will give
a brief example using a binary dependent variable. This will unite the estimators proposed in
sections 3.2 on page 14 and 3.2.2 on page 16 with the feasible weights as in subsection 5.2 on
page 32. Both the interpretation in section 4.2 on page 21 and the interpretation in section 4.3 on
the preceding page are applicable.

The data for this demonstration are the Boston Home Mortgage Disclosure Act (HMDA) data
from the famous paper by Munnell et al. [36, 41]. The research question is whether there is a
statistically signi�cant di�erence in mortgage application denial based on race. The dependent
variable of interest is deny, a binary variable that takes a value of one if the mortgage application
was denied and zero otherwise. Because this variable is binary, we will employ a linear probability
model to study how E(yi|xi) = Pr(yi = 1|xi) varies with several covariates. The most interesting
covariate is black, which takes a value of one if the individual is black and zero otherwise.

The linear probability model is appropriate for this demonstrative example. In the simple
regression of deny on black, the predictor falls within the unit interval with probability one: thus
the expectile weights are known a priori and the usual criticism of linear probability models does not
apply. Additionally, the binary response model gives the expectile weights a concrete interpretation:
predictors with non-central τ correspond to atypical relative odds of denial. Both OLS and GLS
estimators have been used for binary response models of this type, see [5]. This example also serves
as a clear motivator for future research into binary response models for expectile regression.
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Simple Regression: deny on black

Figure 3: The simple regression of deny on black. All observations fall into one of the four corners,
constraining a traditional quantile regression. Expectiles for τ equal to all multiples of .1 ∈ (0, 1)
are given along with τ = .99. The expectile �decile� with the largest slope is τ = .8, suggesting that
the largest expected e�ect of black on deny occurs for individuals with approximately 4 times the
average odds of denial, ceteris paribus. A subset of regression coe�cients is shown in Table 3.
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Table 1: Simple Expectile Regression Coe�cients
(1) (2) (3) (4) (5)

VARIABLES deny deny deny deny deny
τ .5 .6 .7 .8 .9

black 0.191*** 0.239*** 0.287*** 0.323*** 0.302***
(0.0253) (0.0295) (0.0324) (0.0327) (0.0281)

Constant 0.0926*** 0.133*** 0.192*** 0.290*** 0.479***
(0.00642) (0.00880) (0.0119) (0.0157) (0.0191)

Observations 2,380 2,380 2,380 2,380 2,380
R-squared 0.042 0.053 0.063 0.071 0.067

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3: Regression coe�cients are shown for τ = .5, .6, .7, .8, .9. In contrast to the OLS regression
where individuals with black = 1 are 19% more likely to be denied, we see that the average is driven
by individuals who were relatively more likely to be denied. For individuals four times more likely
than average to be denied, the estimated e�ect of black = 1 is close to 32%. The e�ect of black is
larger for individuals who were already experiencing credit challenges in that sense.

4.4.1 Demonstration Results

For this data, the core question is how di�erent covariates a�ect the probability of home mortgage
application denial. In Figure 3, we have a scatterplot of deny relative to black. Obviously, both
are binary variables and there are only four possible locations where data are found. This is
problematic for a traditional quantile regression, which passes through data points. Using that
methodology, there would be exactly three possible �t lines tracing a �Z� shape through these
four points. Expectiles, however, fall between the data and vary with respect to τ as discussed
elsewhere. In the simple regression model shown in that �gure, �tted values fall in the unit interval
with probability one and the weights wi are known a priori.

From the �gure, it is clear that the expectiles of deny vary di�erently with respect to black.
In fact, it is clear that the lowest expectiles have very low slope and higher expectiles have the
opposite. Table 3 lists a subset of regression coe�cient estimates from the same �gure. While,
on average, individuals with black equal to one are approximately 19% more likely to be denied,
the coe�cient is as high as 32% at the τ = .8 expectile. This indicates that the individuals most
a�ected by racial disparity are those who were more likely to be denied regardless of race. The
result should not be surprising.

For linear probability models, Goldberger [19] suggested using generalized least squares to im-
prove the e�ciency of the estimator. Because the response variable is binary (for any τ ∈ (0, 1)),
we have

V ar(εi|X) = x′iβτ (1− x′iβτ ). (4.27)

Setting weights equal to the inverse of this expression produces consistent estimates [35] and
has been adopted widely for linear probability models [20, p. 727]. We adopt this for the expectile
linear probability model and show results in Table 5. These are similar to those in Table 4, with
the maximum coe�cient for black reaching approximately 14%. In the GLS case, however, the
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Table 4: Expectile Regression Coe�cients
(1) (2) (3) (4) (5)

VARIABLES deny deny deny deny deny
τ = .1 .3 .5 .7 .9

black 0.0170*** 0.0485*** 0.0837*** 0.124*** 0.150***
(0.00540) (0.0138) (0.0226) (0.0316) (0.0379)

pi_rat 0.140*** 0.299*** 0.449*** 0.655*** 0.895***
(0.0445) (0.0792) (0.114) (0.157) (0.194)

hse_inc 0.0375 0.0251 -0.0480 -0.166 -0.288
(0.0371) (0.0688) (0.110) (0.167) (0.237)

ltv_med 0.00798** 0.0182** 0.0314** 0.0513** 0.0735**
(0.00338) (0.00744) (0.0127) (0.0209) (0.0334)

ltv_high 0.0391** 0.115*** 0.189*** 0.250*** 0.268***
(0.0167) (0.0367) (0.0502) (0.0572) (0.0622)

ccred 0.00608*** 0.0174*** 0.0308*** 0.0478*** 0.0622***
(0.00119) (0.00279) (0.00458) (0.00668) (0.00853)

mcred 0.00732** 0.0137* 0.0209* 0.0336* 0.0545*
(0.00355) (0.00724) (0.0113) (0.0176) (0.0297)

pubrec 0.0497*** 0.131*** 0.197*** 0.237*** 0.195***
(0.0103) (0.0253) (0.0349) (0.0399) (0.0390)

denpmi 0.520*** 0.708*** 0.702*** 0.669*** 0.560***
(0.126) (0.0688) (0.0451) (0.0380) (0.0359)

selfemp 0.0143*** 0.0359*** 0.0598*** 0.0946*** 0.145***
(0.00516) (0.0123) (0.0205) (0.0321) (0.0467)

Constant -0.0812*** -0.146*** -0.183*** -0.215*** -0.124*
(0.0196) (0.0237) (0.0277) (0.0387) (0.0717)

Observations 2,380 2,380 2,380 2,380 2,380
R-squared 0.107 0.210 0.266 0.301 0.243

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Regression coe�cients for the full spectrum: τ = .1, .3, .5, .7, .9, with many covariates
added. The e�ect of black shrinks slightly but is statistically signi�cant at all expectiles shown
even with nine additional explanatory variables in the model. In this case, the largest e�ect of
black occurs at τ = .9 and is roughly 15%. Unsurprisingly, the coe�cients for most variables
increase with τ : it is the individuals with a high probability of denial who also experience the
largest marginal e�ects.
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Table 5: Expectile GLS Regression Coe�cients
(1) (2) (3) (4) (5)

VARIABLES deny deny deny deny deny
τ = .1 .3 .5 .7 .9

black 0.0116*** 0.0411*** 0.0810*** 0.137*** 0.108***
(0.00336) (0.0115) (0.0216) (0.0328) (0.0249)

pi_rat 0.0468*** 0.174*** 0.377*** 0.617*** 0.871***
(0.00823) (0.0287) (0.0614) (0.115) (0.142)

hse_inc 0.00821 0.0332 0.0633 0.110 -0.262
(0.00963) (0.0202) (0.0768) (0.122) (0.162)

ltv_med 0.00220*** 0.00835** 0.0191*** 0.0442** 0.0761**
(0.000820) (0.00353) (0.00538) (0.0175) (0.0312)

ltv_high 0.0318*** 0.0945*** 0.152*** 0.256*** 0.130***
(0.0109) (0.0340) (0.0526) (0.0457) (0.0358)

ccred 0.00367*** 0.0133*** 0.0274*** 0.0508*** 0.0632***
(0.000554) (0.00195) (0.00387) (0.00647) (0.00707)

mcred 0.00239*** 0.00899*** 0.0191*** 0.0293*** 0.0701***
(0.000762) (0.00202) (0.00644) (0.0106) (0.0249)

pubrec 0.0409*** 0.129*** 0.211*** 0.239*** 0.126***
(0.00850) (0.0239) (0.0326) (0.0384) (0.0275)

denpmi 0.525*** 0.735*** 0.716*** 0.838*** 0.593***
(0.128) (0.0367) (0.0288) (0.0200) (0.0288)

selfemp 0.00793*** 0.0297*** 0.0640*** 0.115*** 0.165***
(0.00217) (0.00746) (0.0166) (0.0283) (0.0379)

Constant -0.0223*** -0.0833*** -0.175*** -0.282*** -0.136**
(0.00240) (0.00971) (0.0180) (0.0340) (0.0638)

Observations 2,133 2,130 2,132 2,153 2,331
R-squared 0.017 0.214 0.472 0.584 0.547

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Regression coe�cients for the full spectrum: τ = .1, .3, .5, .7, .9, with many covariates
added. The GLS estimator is used with ωi = (x′iβ(1− x′iβ))

−1
. Results largely resemble the

previous table, with the coe�cient on black reaching a value of approximately 14%.
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maximum coe�cient is obtained at τ = .7, while the OLS coe�cient is maximized at τ = .9. There
is room for discussion regarding which qualities might cause an individual to expect the largest
di�erence as a result of the black variable. The number of observations in the GLS results varies
because observations with predictors outside the unit interval have unde�ned variance per 4.27. As
a result, these observations dropped as the model iterates to convergence.

In the �gure and all three tables, the economic result is the same. The standard OLS estimator
does not represent the full spectrum of possibilities. Rather, it reports only the unconditional
average. In atypical cases, the di�erence between black and non-black distributions is smaller (for
very low τ or extremely high τ) or larger (for τ between .7 and .9, say) than usually reported. This
adds value to the empirical discussion by revealing heterogeneity.

In this example, the non-central regressions deliver some insight into which individuals might
be disproportionately a�ected by their race or unmeasured race-correlated attributes. Conditional
on the full spectrum of covariates available, the individuals closest to the �margin� may expect to
be 15% more likely to be denied on account of race. This is nearly twice the coe�cient suggested
by a standard OLS or GLS regression.

5 Feasibility

5.1 Feasibility of the Expectile WLS Estimator

Throughout our discussion of the expectile estimator and its corresponding predictor, we have
employed the assumption that the true weight matrix W is known perfectly. In practice, this may
fail to be the case, but it holds in at least one example as in Figure 3 on page 26. The estimator
for expectile coe�cients

β̂τ = (X′WX)−1X′Wy (5.1)

has a typical generalized least squares form with diagonal weight matrix given by

[W ]ii =

{
τ if yi − x′iβτ ≥ 0

1− τ if yi − x′iβτ < 0.
(5.2)

GLS estimators of this form are usually considered to be infeasible because their weights (above)
are not known a priori. The �feasible� GLS-type estimator uses estimated weights obtained jointly
with the linear coe�cients β̂τ,FGLS . In our case, that gives

β̂τ,FGLS = (X′ŴX)−1X′Ŵy

[Ŵ ]ii = ŵi =

{
τ if yi − x′iβ̂τ,FGLS ≥ 0

1− τ if yi − x′iβ̂τ,FGLS < 0.
(5.3)

Estimation of β̂τ,FGLS , Ŵ is usually achieved by iteratively reweighted least squares, which is a

simple algorithmic procedure. Given some initial condition for β̂τ , such as OLS estimates, weights
Ŵ are obtained and a new β̂τ,FGLS can be evaluated. Repeating this procedure with the new

value β̂τ,FGLS , the estimated coe�cients will converge relatively quickly as the sub-Hessian for this
problem is globally negative semide�nite (see [38]). Then the converged estimator is the correct
(exact) sample linear expectile coe�cient vector. This is similar overall to the procedure used by
Zellner [49] for the mean regression.
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It is clear from the de�nition in equation 5.3 on the preceding page that many of the estimated
weights will be exactly correct and the entire weight matrix is estimated consistently so long as
β̂τ,FGLS is consistent, which was proven by [37]. In the heteroscedastic case, we have Σii = wiωii.

Then consistency of β̂τ,FGLS requires a consistent estimator of wi and one of ωii. See [8] or [38] for
asymptotic conditions for that estimator.

However, the expectile regression model di�ers from the usual GLS example because the optimal
estimator is not always infeasible. For any nondegenerate distribution F , continuous or discrete,
the expectile function EY (τ) : [0, 1] 7→ Support(Y ) is surjective, causing the true expectile to fall
between points with positive probability density (or mass) of Y with probability one for τ ∈ (0, 1).
In any sample, the empirical CDF Fn will itself be discrete, causing the sample expectile (or linear
predictor) to fall between observations almost surely. If the true expectile and the sample expectile
fall between the same set of observations,

{i : yi − x′iβ̂τ,FGLS ≥ 0} ≡ {i : yi − x′iβτ ≥ 0} (5.4)

then the estimated weights are exact; ŵi = wi. In that case, the optimal expectile estimator
β̂τ = (X′WX)−1X′Wy is feasible. Using the location model as an example, we can see that this
happens with positive probability.

Lemma 15. Let Y be distributed according to F with Lebesgue measure. Let {yi}ni=1 be an i.i.d.
sample from F . The distribution of the random variable µ̂τ has positive density on the interval
[inf(Y ), sup(Y )].

Proof. We estimate the τ th sample expectile µ̂τ by minimizing Rn(θ; τ) = n−1
∑n
i=1 ςτ (yi − θ),

where the �swoosh� function ςτ is as in equation 5.5 or equation 2.4 on page 4,

ςτ (u) = u2|τ − I(u < 0)|. (5.5)

Because the solution of this strictly convex minimization problem (and the �rst-order condition) is
unique, we have

µ̂τ = arg min
θ
n−1

n∑
i=1

ςτ (yi − θ).

=⇒ n−1
n∑
i=1

(yi − µ̂τ )|τ − I(yi − µ̂τ < 0)| = 0 (5.6)

or

n−1(1− τ)

n∑
i=1

(yi − µ̂τ )I(yi − µ̂τ < 0) = n−1τ

n∑
i=1

(yi − µ̂τ )I(yi − µ̂τ ≥ 0) (5.7)

The probability of the sample expectile µ̂τ being less than or equal to a particular value x, is
then the same as

Pr(

(
τ

∫ ∞
x

(y − x)dFn
)
≤
(

(1− τ)

∫ x

−∞
(x− y)dFn

)
), (5.8)

where the term on the left is clearly monotone decreasing with x and the term on the right is
monotone increasing. This means that, as x increases, the probability of the event µ̂τ ≤ x is
nondecreasing (the set of possible values for D := {{yi}ni=1 : µ̂τ ≤ x} is increasing). In particular,
in means that the probability of the event Pr(µ̂τ ≤ x) =

∫
D
f(y)dy is monotone increasing if F has

Lebesgue measure, implying that the distribution of µ̂τ has positive density on [inf(Y ), sup(Y )].
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Proposition 16. Let Y be distributed according to F with Lebesgue measure. Let {yi}ni=1 be an
i.i.d. sample from F . The sample expectile weights ŵi for µ̂τ : τ ∈ (0, 1) are exact with positive
probability.

Proof. This follows directly from the previous lemma, as the �nite-sample distribution of µ̂τ has
positive density on the interval [inf(Y ), sup(Y )]. For τ ∈ (0, 1), µτ falls into the interior of
this interval with probability one. Then, for any sample, the probability that there is at least
one observation above µτ and at least one observation below µτ is positive. Then the interval
[max(yi|yi < µτ ),min(yi|yi ≥ µτ )] exists with positive probability. Then, because the distribution
of µ̂τ has positive density, the the probability that max(yi|yi < µτ ) < µ̂τ < min(yi|yi ≥ µτ ) is also
positive.

The same result is applicable asymptotically to distributions that do not have Lebesgue measure.
Because the support of the distribution of the weighted average µ̂τ is asymptotically dense, there is
a nonempty set of possible samples producing max(yi|yi < µτ ) < µ̂τ < min(yi|yi ≥ µτ ) as n→∞.

Suppose that the distribution F does not have Lebesgue measure, but let F be continuous at
µτ . Let there be some sequence an → ∞ such that an( ˆµτ,n − µτ )  Z as n → ∞. Very broad
conditions for this limiting behavior in expectiles were published recently [23]. So long as Z has
density, clearly, ∫ an(min(yi|yi≥µτ )−µτ )

an(max(yi|yi<µτ )−µτ )
dZ > 0 (5.9)

for any n < ∞ and asymptotically so long as an (min(yi|yi ≥ µτ )−max(yi|yi < µτ )) 6→ 0. In
one interesting example, where the distribution F is fully discrete or has no density in an open ball
around µτ , the length of the interval min(yi|yi ≥ µτ )−max(yi|yi < µτ ) diverges as n→∞, so

an (min(yi|yi ≥ µτ )− µτ )→∞ (5.10)

an (µτ −max(yi|yi < µτ ))→∞. (5.11)

which implies

lim
n→∞

∫ an(min(yi|yi≥µτ )−µτ )

an(max(yi|yi<µτ )−µτ )
dZ =

∫ ∞
−∞

dZ = 1 (5.12)

That is, the sample expectile weights ŵi are correct with probability one in the limit.
Furthermore, it is possible to construct a realistic example where sample weights are exact with

probability one in a �nite sample. This will be the case in well-speci�ed binary response models,
in particular.

5.2 Example: Expectile Binary Response

Among regression models where the dependent variable is not assumed to have a continuous dis-
tribution, the binary response case is quite common. These models occur when Y takes one of two
values, usually labeled 0 and 1, with some probability dependent on covariates X. See [22], [21] for
examples.

Because the dependent variable is binary and a Bernoulli distribution is indexed by a single
parameter (the probability of a nonzero outcome) it is popular to �nish the speci�cation of a
stochastic binary response model by assuming that

E(Y |X = x) = Pr(Y = 1|x) = G(x′β) (5.13)
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for some convenient class of function G. The linear probability model G(x′β) = x′β is the
obvious choice if we treat the model as being no di�erent from any other linear regression. But
because X ′β is unbounded for unbounded X and the least squares criterion is indi�erent towards
whether or not the predictor falls within the unit interval for all observations, other designs have
been advocated. These include the famous Logit and Probit models; see [2] for a thorough com-
parison or see Greene [20] for an overview. These two models and others are designed to remain
bounded within the unit interval for all X.

Without respect to the individual function G chosen in any particular application, we say that
the binary response model is �well speci�ed� if it maps the inner product of two k-vectors, x′iβ, to
the interior of the unit interval14

G : Rk 7→ (0, 1) (5.14)

and we note the obvious result.

Proposition 17. Let y,X belong to a binary response regression problem with yi ∈ {0, 1}∀i. Let
the predictor G(x′β) be well-speci�ed as in equation 5.14. Then the estimated expectile weights are
exact (the optimal weights matrix W is feasible) with probability one.

The proof of this proposition is obvious: the response variable takes only two values and the
predictor falls strictly between them. If the ith residual from the true binary data generating process
is positive, then yi equals one. Then yi > G(x′β) regardless of x, β, and ŵi = wi = τ . The same
logic applies to negative residuals.

The function G(x′β) is now the predictor, which removes the obvious interpretation from the
coe�cient vector β when G is nonlinear. However, most of the results we might be interested in
obtaining can be reproduced for the predictor G(x′β). For instance, the variance of a Bernoulli
variable is obvious as is the conditional distribution of errors. For simple parametric sigmoid
functions or probability distributions that are common choices for G, further algebraic results can
be obtained. See Angrist and Pischke [5] for applications to the mean regression. Expectile logit
and probit models of this form have not been developed but are a promising area for future research.
We invite other authors to consider this topic.

6 Variance of Expectile Residuals

The estimated variance and mean squared error of expectile residuals have not been studied thor-
oughly. This has the potential to become a complicated subject. As an example, assume that
ε|X ∼ (0, σ2Σ) so that β is the �true� mean regression coe�cient vector. Then

V ar(y|X) = E ((y −Xβ)(y −Xβ)′|X)

= E (εε′|X) = σ2Σ (6.1)

We have a shape parameter Σ and a scale parameter σ2. The shape parameter Σ requires further
assumptions to identify: see [33]. Tools are available for the mean regression, as in [46]. These
tools can be adapted to expectile regression, but this subject is large and situationally dependent.

14There is a question regarding whether G should map its inputs to the open interval (0, 1) or the closed interval
[0, 1]. In general, it would be undesirable to predict that Pr(yi = 1|xi) = 1 or 0 and to observe an error term, as this
would make the model logically incoherent.
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We cannot address it properly here. As in previous sections, we will restrict our attention to the
independent case where E (εε′|X) is a diagonal matrix.

Note also that the expectile variance parameter σ2
τ is not the mean variance σ2 nor is it the

σ2
i of the location-scale model which is popular in the generalized quantile literature [6, 12], which

varies with i for a given τ . Instead, we presume that multiple expectiles are of interest and note
that they do not have the same mean squared error, even under simple conditions.

Moreover, the problem of estimated variance of the residuals is bifurcated when the location
parameter is non-central. We have three di�erent statistics of interest:

1. The variance of residuals, V ar(εi|X).

2. The weighted variance or mean squared error (under the weighted distribution F̃ in 2.6 on
page 5).

3. The mean squared error of residuals, E(ε2i |X).

Because the residuals are not zero on average except when τ = .5, the variance of the residuals will
no longer be equal to the mean squared error. However, under the weighted distribution F̃ both
are the same: this was proven in equation 3.8 on page 13.

The expected error itself is also interesting, but it is merely the di�erence between the estimated
expectile and the estimated mean regression:

E(εi|X) = E(yi − x′iβτ + x′iβ.5 − x′iβ.5|X)

= E(yi − x′iβ.5|X)− x′iβτ + x′iβ.5

= x′iβ.5 − x′iβτ . (6.2)

Thus, the variance of residuals V ar(εi|X) can be obtained as

V ar(εi|X) = V ar(yi − x′iβτ − E(εi|X)|X)

= V ar(yi − x′iβ.5|X) (6.3)

which is merely the OLS or GLS residuals. This requires no special treatment15.
Likewise, the weighted variance is equal to the weighted mean squared error:

WV ar(εi|X) = Eτ (ε2i |X), (6.4)

see equation 3.8 on page 13. Thus, when we take the interpretations from section 4 on page 17
seriously, we may employ estimators such as the standard weighted variance estimator

n

n− k

(
n∑
i=1

wi

)−1 n∑
i=1

wiε̂2i . (6.5)

In contrast, we use an un-weighted estimator to estimate the expectile mean squared error. The
typical estimator

s2 =
ε̂′ε̂

n− k
(6.6)

15The fact that V ar(yi − x′iβτ |X) = V ar(yi − x′iβ.5|X) for all τ in the location-scale model suggests using the

estimated GLS weights Ω̂ from a standard GLS problem for all expectiles. Others may wish to explore the practicality
of this approach.
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is usable but not necessarily optimal. This is discussed in the next section.
As an aside, the scale parameter σ2

τ for the mean squared error of (y−Xβτ ) will vary across τ.
This means that the residuals εi can become extremely large as the predictorXβτ moves far into the
tail of an unbounded distribution. Even if yi|X are conditionally i.i.d., we have E (εε′|X) = σ2

τIn
where the constant σ2

τ will vary depending on τ . From the classic literature, we know that σ2
τ is

minimized when τ = .5. The following subsections are devoted to estimating σ2
τ .

6.1 Estimated Mean Squared Error

The �usual� OLS estimators for the residual mean squared error can be adapted to the expectile
regression environment. For the case where τ = .5, estimators for σ2 include the Gaussian MLE
σ̂2 and the �unbiased� moment-based estimator s2. These can be used without modi�cation for
non-central expectile MSE by employing the expectile residuals ε̂ = y −Xβ̂τ . Then they are

σ̂2
τ =

ε̂′ε̂

n
, s2τ =

ε̂′ε̂

n− k
. (6.7)

For τ = .5, the latter was shown to be unbiased by Gauss [18]. That classical result was
reformulated by Aitken using matrix algebra [1] and is found in nearly all elementary econometrics
textbooks today. We will address these traditional estimators jointly by focusing �rst on the inner
product of residuals, ε̂′ε̂. With the assumption that errors are i.i.d., the covariance matrix will be
diagonal and we have, e�ectively, n observations of the same error distribution. And

E(εε′|X) = E((y −Xβτ )(y −Xβτ )′|X))

= diag(σ2
τ ). (6.8)

However, the properties of estimators in equation 6.7 that are well-known in the OLS case do
not extend to expectile regression. This is shown below. Taking the sum of squared residuals ε̂′ε̂,
we derive its expected value as a function of σ2

τ . This is a standard way to prove unbiasedness of
s2 for the mean regression. Notice: with the annihilator matrix Mτ we have

ε̂ = y −Xβ̂τ = Mτy = Mτ (Xβτ + ε) = Mτ ε. (6.9)

So we may write the sum of squared residuals as

E(ε̂′ε̂|X,W ) = E(ε′M ′τMτ ε|X,W )

=

n∑
i=1

n∑
j=1

[M ′τMτ ]ij E(εiεj |X,W )

=

n∑
i=1

[M ′τMτ ]ii σ
2
τ . (6.10)

This follows from the independence of ε′is and the de�nition of matrix multiplication. Nearly
the same result was given by Aitken [1] where the last line will reduce to σ2(n − k) in the special
case τ = .5. But for any other expectile, the oblique annihilator matrix Mτ is not symmetric and
M ′τMτ does not simplify. Of course, the last expression above is σ2

τ × trace(M ′τMτ ) where
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Limit Trace of P ′τPτ , k = 1

Figure 4: The trace of the inner product of the expectile projection matrix Pτ with itself:
trace(P ′τPτ ). The trace is shown as a function of τ and of F (µτ ) i.e. what proportion of ob-
servations are given weight wi equal to 1 − τ . In this case, X = 1n, so k = 1. The minimum,
trace(P ′τPτ ) = k = 1, occurs wherever τ = .5 and not otherwise.

trace(M ′τMτ ) = trace((I − Pτ )′(I − Pτ ))

= trace(I − Pτ − P ′τ + P ′τPτ ). (6.11)

We will address this piecewise. The trace of I is n. Next,

trace(Pτ ) = trace(X(X′WX)−1X′W )

= trace((X′WX)−1X′WX)

= k (6.12)

and the same for trace(P ′τ ). Then

trace(P ′τPτ ) = trace(WX(X′WX)−1X′X(X′WX)−1X′W )

= trace((X′WX)−1X′X(X′WX)−1X′WWX)

= trace

( n∑
i=1

wixix
′
i

)−1( n∑
i=1

xix
′
i

)(
n∑
i=1

wixix
′
i

)−1( n∑
i=1

w2
i xix

′
i

) . (6.13)

As you see, the trace of P ′τPτ is a random variable that will depend on the data generating
process. But, conditional on X and W , we have the following lemma.

Lemma 18. Let y,X be as above and ε̂ = y −Xβ̂τ with β̂τ = (X′WX)−1X′Wy. Then

E(ε̂′ε̂|X,W ) = σ2
τ (n− 2k + trace(P ′τPτ )) . (6.14)

So, neither variance estimator in equation 6.7 will be unbiased except in a special case where
trace(P ′τPτ ) = k or trace(P ′τPτ ) = 2k. The classic result that s2 is unbiased and σ̂2 is biased
downwards does not hold except for τ = .5. Rather, s2 is unbiased if and only if trace(P ′τPτ ) = k,
which is if and only if τ = .5. For all other values of τ , the estimator s2 is biased upwards.
But there are special cases where trace(P ′τPτ ) = 2k, and the standard MLE estimator σ̂2 is unbi-
ased. In practice, neither estimator is especially desirable for unbiasedness. Moreover, the value of
trace(P ′τPτ ) can exceed 2k for extreme expectiles (see Figure 4) in very skew distributions, which
indicates that both variables may be biased upwards under these circumstances. The limiting value
limn→∞ trace(P ′τPτ ) of the trace of the inner product of the two projection matrix is shown in
Figures 4 and 5. In the former, k = 1. In the latter, k = 5. We will discuss the properties of this
function in 6.2 on page 38. We will also show that the sampling distribution for small n can di�er
signi�cantly from is limiting distribution; see Figure 6 on page 40.

Notice that equation 6.14 implies the following result.
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Limit Trace of P ′τPτ , k = 5

Figure 5: The trace of the inner product of the expectile projection matrix Pτ with itself:
trace(P ′τPτ ). The trace is shown as a function of τ and of F (µτ ) i.e. what proportion of observa-
tions are given weight wi equal to 1− τ . In this case, k = 5. The minimum, trace(P ′τPτ ) = k = 5,
occurs wherever τ = .5 and not otherwise.
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Lemma 19. Let y,X be as above and ε̂ = y − Xβ̂τ with β̂τ = (X′WX)−1X′Wy. Then the
estimator

˜σ2
τ,n =

(
y −Xβ̂τ

)′ (
y −Xβ̂τ

)
n− 2k + trace(P ′τPτ )

(6.15)

is unbiased; i.e. E( ˜σ2
τ,n|X,W ) = σ2

τ .

The proof is obvious, given the preceding lemma where E(ε̂′ε̂|X,W ) is shown. As a practical
matter it should make little di�erence: the usual estimators in 6.7 will be extremely close to
each other and to the revised estimator in 6.15 when n is su�ciently large and the skewness of the
distribution in question is not extreme. However, the di�erence may be noticeable in small samples.
To employ the revised estimator, evaluation of the trace of P ′τPτ numerically is only slightly more

di�cult than evaluation of the estimator β̂τ itself. In total, P ′τPτ is of comparable complexity to
the sandwich variance in equation 7.4.

If evaluating trace(P ′τPτ ) may be costly for very large or high-dimensional data, a further

simpli�ed estimator with desirable properties is
n
∑
w2
i

(
∑
wi)

2 ×k. This becomes clear in the next section.

6.2 Consistency of MSE Estimators

Results relating to the asymptotic performance of the estimated expectile regression coe�cients β̂τ
can be found in the literature. Newey and Powell [37] provide broad conditions for consistency and
asymptotic normality of the estimator in the linear regression case. Working papers by Barry et al.
[8] and Philipps [38] present asymptotic results for the weighted regression coe�cients. Holzmann
and Klar [23] investigate the asymptotic properties of the expectile more thoroughly for the location
model.

Here, we show that the proposed estimator in equation 6.15 is consistent. We also show that
the estimators in equation 6.7 are consistent. Under the assumption that the sequence {yi,xi}
is independently drawn from a location-scale model, we have Pr(wi = τ) constant and W,X are
independent. Then as n→∞ we have the following.

Lemma 20. Let W,X be independent and n−1X′X
p→ QX for some matrix QX as n→∞. Then

n−1X′WX =
1

n

n∑
i=1

wixix
′
i
p→ E(wixix

′
i) = E(wi)E(xix

′
i). (6.16)

The above statement follows from independence and the de�nition of expectations. The location-
scale model (with independence ofW,X) is not required for consistency of β̂τ under misspeci�cation,
but it is required for the simple result below.

Lemma 21. Let n−1X′WX
p→ E(wi)E(xix

′
i) as n→∞ and E(xix

′
i) have rank k . Then
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trace(P ′τPτ ) = trace

( n∑
i=1

wixix
′
i

)−1( n∑
i=1

xix
′
i

)(
n∑
i=1

wixix
′
i

)−1( n∑
i=1

w2
i xix

′
i

) .

p→ trace
(

(nE(wi)QX)
−1

(nQX) (nE(wi)QX)
−1 (

nE(w2
i )QX

))
=

n2E(w2
i )

n2E (wi)
2 trace

(
Q−1X QXQ

−1
X QX

)
=

E(w2
i )

E (wi)
2 × k (6.17)

The result follows from independence and the continuous mapping theorem. The obvious esti-

mator for the ratio in the last line is
n
∑
w2
i

(
∑
wi)

2 , which is Op(1) as both its numerator and denominator

are Op(n2) . The value of this ratio (both equation 6.17 and the obvious estimator) varies depending
on only two factors: τ itself, and the proportion of observations such that wi = τ , which is simply
equal to Pr(yi ≥ x′iβτ ). It is interesting that the expectile variance estimate is in�uenced by which
quantile the τ th expectile happens to approximate.

Proposition 22. Let σ2
τ = E(ε2i ), rank(E(X′WX)) = k, E(X′Wε) = 0, and let β̂τ be a consistent

estimator of βτ , β̂τ
p→ βτ . The estimator

˜σ2
τ,n =

(
y −Xβ̂τ

)′ (
y −Xβ̂τ

)
n− 2k + trace(P ′τPτ )

p→ σ2
τ (6.18)

i.e., ˜σ2
τ,n is a consistent estimator.

Proof. The proof is almost standard. Of course ε̂i = εi − x′i(β̂τ − β), so

σ̂2
τ =

1

n

n∑
i=1

ε2i − 2

(
1

n

n∑
i=1

εiwix
′
i

)
(β̂τ − β) + (β̂τ − β)′

(
1

n

n∑
i=1

wixix
′
i

)
(β̂τ − β)

p→ σ2
τ

by the weak law of large numbers, the continuous mapping theorem, and the convergence in
probability of β̂τ to βτ . Then

˜σ2
τ,n =

n

n− 2k + trace(P ′τPτ )
σ̂2
τ

p→ σ2
τ

by the continuous mapping theorem, together with the fact that trace(P ′τPτ ) = Op(1), which

implies n
n−2k+trace(P ′

τPτ )

p→ 1. Notice that we have proven consistency for ˜σ2
τ,n by �rst proving

consistency of σ̂2
τ , but

n
n−k

p→ 1 also. Then s2τ is also consistent.

The di�erence between the three consistent estimators will be small in data sets of any reasonable
size, particularly in cases where trace(P ′τPτ ) is close to n or k. In Figure 6, we provide some
simulation evidence that the sampling properties of trace(P ′τPτ ) are not a major nuisance. For
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Figure 6: The median and 70% con�dence intervals for trace(P ′τPτ ) for k = 5 and n =
10, 25, 250, or 1000. [X]ij is distributed uniformly and the distribution of y is not speci�ed,

but Pr(yi ≥ x′iβ̂τ ) = F (µτ ) is taken as �xed.
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�ve small-to-medium sample sizes (n = 10, 25, 250, or 1000) with a �xed Pr(yi ≥ x′iβ̂τ ), the 70%
con�dence intervals of the trace(P ′τPτ ) are shown. The simulated data X are n× 5 and uniformly
distributed. These sampling distributions converge rapidly towards the limiting value as n increases,
but they do not vary substantially when n is small. The di�erence between the sample median at
n = 10 is never more than 3, which is less than k = 5 in this case. Even so, the di�erence suggests
that there is value in using the calculated trace(P ′τPτ ) for the degrees of freedom adjustment in small
samples. Note that only F (µτ ) ≥ .5 are reported because the problem is symmetric: τ = .2, F = .1
is the same as τ = .8, F = .9 , which is shown.

6.3 Asymmetric Conditional MSE

It may be useful to estimate the conditional mean squared error E(ε2i |εi ≷ 0) for two reasons. First,
the use of expectile predictors for τ 6= .5 eliminates any possibility that the distribution of errors
is symmetric for nondegenerate cases. It is trivial to show that, if the distribution were symmetric,
the mean would be zero�which we know to be false. This makes symmetric con�dence intervals (of
the usual µ ± 1.96σ form, for instance) problematic16. Second, it may be useful to compare the
estimated ratio of conditional mean squared errors to the assumed ratio 1−τ

τ as a test of assumption
4. Others may wish to explore the development of such a test.

As such, it is desirable to estimate the conditional mean squared error of the residual for the
two cases where it is positive or negative. Denote the number of εi ≥ 0 as n1 and the number of
εi < 0 as n2 such that n1 + n2 = n. Obvious estimators are

σ̂2
τ |εi ≥ 0 =

1

n2

n∑
i=1

ε̂i
2I(εi ≥ 0) (6.19)

σ̂2
τ |εi < 0 =

1

n1

n∑
i=1

ε̂i
2I(εi < 0) (6.20)

but it is less obvious how to partition the �degrees of freedom� penalty to create an unbiased
estimator. This is important, because either n1 or n2 may be very small for extreme quantiles (τ
close to 0 or 1). A general result is not obvious, but for the i.i.d. case where I(εi ≥ 0) is independent
of ε2i , we would have

E(

n∑
i=1

ε̂i
2I(ε̂i ≥ 0)|X,W ) = nE

(
ε̂i

2I(ε̂i ≥ 0)|X,W
)

= E
(
ε̂2i |ε̂i ≥ 0

)
× Pr(ε̂i ≥ 0) (6.21)

The expectation in the last line can be estimated by its sample moment and the probability can
be estimated using the empirical CDF, so

σ̃2
τ |εi ≥ 0 :=

1

n− 2k + trace(P ′τPτ )

(
n∑
i=1

ε̂i
2I(εi ≥ 0)

)
× n

n2
(6.22)

16Under correct model assumptions (expectile assumption 4), we have 1−τ
τ

times the variance for positive errors

relative to negative errors, so it is possible to solve for the assumed relative variances as a function of σ2. However,
we prefer to consider the possibility that this assumption may be violated.
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is a reasonable estimator for equation 6.19 with a degrees of freedom penalty. Clearly this
estimator17 is consistent in the same way as equation 6.18 and a similar estimator can be made for
the mean squared error of negative error terms.

6.4 Expectile Adjusted R2

The R2 statistic for expectile regression (expectile R2) can be found in only a few places in the
literature. Our results from the previous two sections cast some light on the construction of that
statistic, so we provide a comment.

The R2 statistic is widely used as a measure of goodness of �t for regression lines, but has
the undesirable property that it improves even when irrelevant regressors are added to the model
speci�cation. This fact has a long history in the literature for mean regression. For expectiles, R2

appears to have been introduced by Aragon et al. [6]. The R2 statistic for generalized m-quantiles
was introduced very recently [12]. Depending on its construction, a statistic of this type may also
su�er from the over�tting problem which is so well studied in the special case where τ = .5; so the
degrees of freedom penalty is important. See the famous paper by Cramer [15] for a discussion of
the bias of R2 or see chapter 8 of the famous text by Maddala [32] for a theoretical overview. The
un-adjusted R2 statistic for non-central estimators is similar to the usual18 weighted least squares
R2, such as the version given by Kvalseth [30] or the suggested variation (pseudo-R2) by Willett
[47]. The generalized version proposed by Anderson and Sprecher [4] can also be used19. As with

17In the expectile GLS case where additional weights {ωi}ni=1 are desired, replace
∑n
i=1 ε̂i

2I(εi ≥ 0) with(
n∑
i=1

ωiI(εi ≥ 0)

)−1 n∑
i=1

ωiε̂i
2I(εi ≥ 0)

as in the usual WLS variance estimator.
18The pseudo R-squared statistic for weighted regression may be used for expectile regression:

R2
ER = 1−

WSSE

WSST
(6.23)

but su�ers from the usual criticisms as far as model selection is concerned. For additional discussion regarding
model selection in expectile regression models, see [39] or [51].
Notice that the formulation given by Willett

= 1−
[

(y −Xβ̂τ )′W (y −Xβ̂τ )

y′Wy − nȳ2τ

]

extends to expectiles only if the weights we prefer for the denominator are the weights that produce ȳ2τ ; we may
prefer to keep the expression in the form

= 1−
[

(y −Xβ̂τ )′W (y −Xβ̂τ )

(y − ȳτ1n)′W (y − ȳτ1n)

]

19A di�culty occurs where WSST =
∑n
i=1 wi(yi − ȳτ )2. Anderson and Sprecher suggest comparing the residual

sum of squares from the full model with a constant-only model;

R2 = 1−
RSS(Full)

RSS(Reduced)
.

For regression expectiles, the two models may not produce the same weights. This corresponds to the formulation
in equations 6.24 and 6.25, where the function ςτ is included explicitly. Willett's pseudo-R2 is the same only if the
weights from the two models are the same; such as in the well-speci�ed binary response case. They will not be the
same in general.

42



generalized least squares models, there are many options.
The adjusted R2 statistic, denoted R̄2, was proposed in a textbook by Theil [43] and has become

a standard tool for mean regression. The adjusted R2 for expectiles proposed by Aragon et al. is

R̄2 = 1−
∑n
i=1 ςτ (yi − x′iβ̂τ )/(n− ν)∑n
i=1 ςτ (yi − ȳτ )/(n− 1)

(6.24)

where the numerator on the right incorporates the weighted sum of squared errors and the
denominator incorporates the weighted total sum of squares. We may write these as

WSSE =

n∑
i=1

ςτ (yi − x′iβ̂τ ) =

n∑
i=1

ŵi(yi − ŷi)2

WSST =

n∑
i=1

ςτ (yi − ȳτ ) =

n∑
i=1

w̃i(yi − ȳτ )2. (6.25)

Note that the estimated weights in the WSSE and WSST need not be the same; see footnote
19. Here, w̃i is equal to τ if yi ≥ ȳτ and 1 − τ otherwise. A degrees-of-freedom adjustment is
already in place in equation 6.24, where the numerator is divided by n− ν and the denominator by
n− 1. The choice of ν is not obvious. In the mean regression case, the purpose of this degrees-of-
freedom adjustment�as stated by Thiel in the original example�is to create an unbiased estimator
of the residual variance in the numerator and an unbiased estimator of the variance of yi in the
denominator. That interpretation is obfuscated by the weights in 6.24, but the role of the penalty
against over�tting is still clear. Importantly, this R̄2 does nest Thiel's adjusted R2 when τ = .5.

In Appendix 3, it is shown that the expected value of E(ε̂′Wε̂|X,W ) is

E(ε̂′ε̂|X,W ) = (trace(W )− trace(WPτ ))σ2
τ

so the optimal degrees of freedom correction can be obtained from this. If we follow Thiel's
argument in favor of the revised statistic, then an unbiased estimator should be used for the esti-
mated variances of εi and yi, respectively. With that purpose in mind, we would suggest further
modifying as

R̃2 = 1−
∑n
i=1 ςτ (yi − x′iβ̂τ )/(trace(Ŵ )− trace(ŴPτ ))∑n
i=1 ςτ (yi − ȳτ )/(trace(W̃ )− trace(W̃P 1

τ ))
. (6.26)

The expected values of WSST is also made clear in Appendix A3. This is arguably the correct
formulation of Thiel's adjusted R2 for expectiles. The more glaring issue is whether the weights in
the numerator should be the same as the denominator, as discussed in footnote 19.

As a measure of goodness of �t under an asymmetric loss function, the formulation in 6.26
uses that loss function ςτ and is entirely appropriate. The other possibility is based on pseudo-R2

statistics, such as from [47]. The fundamental question is whether we prefer a measure of goodness
of �t per the loss function ςτ or whether we are trying to replicate the adjusted R2 statistic for a
latent model, such as the model produced by the distribution F̃ rather than F . In the latter case,

R̃2 = 1−
∑n
i=1 ŵi(yi − x′iβ̂τ )/(trace(Ŵ )− trace(ŴPτ ))∑n
i=1 ŵi(yi − ȳτ )/(trace(Ŵ )− trace(ŴP 1

τ ))

would seem to be the preferable statistic: the weights in both the numerator and denominator
should be taken to be the best available estimation of the weights corresponding to F̃ , which comes
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from the full model. The weights in Pτ and P 1
τ would also be the estimated weights from the full

model. This reduces to the pseudo-R2 of Willett [47] when the degrees of freedom adjustment is
omitted and has the same interpretation as the generalized R2 of Anderson and Sprecher [4] when
the estimated weights ŵi as in equation 5.3 are taken seriously�when the interpretation is that the
latent process is truly from this particular F̃ .

7 Conclusions

Under modi�ed assumptions, the Gauss-Markov theorem does extend to expectile regression.
Thus, we import expectile regression to the classical framework. We �nd that the expectile re-
gression estimator is the best linear unbiased estimator under a set of assumptions that requires
asymmetric variance and a weighted orthogonality condition. Interestingly, the �rst (linearity) and
third (full rank) Gauss-Markov assumptions require no modi�cation. We also show that expectile
GLS is the BLUE under asymmetric heteroscedasticity. The generalized (weighted) estimator has
been studied only recently and deserves additional attention. For the location-scale model where
generalized quantiles attained by di�erent loss functions produce the same sets of regression lines,
the τ th expectile GLS estimator is obviously the BLUE for whichever regression line (under any
loss function) corresponds to the τ th expectile.

The expectile regression (generalized, when heteroscedasticity is present) is the BLUE in three
alternative model designs that have useful interpretations. It is the BLUE when (1) residuals
are intended to be some constant other than zero, on average; or (2) we model an observation
with atypical odds of positive and negative errors; or (3) data are missing not-at-random and
asymmetrically. However, estimators for residual variance and mean squared error are not as
simple as in the mean regression: they di�er depending on the choice of interpretation and the
usual degrees of freedom penalty may be incorrect. Our unbiased sample variance estimator is
smaller than the standard estimator, which is biased in every case except the mean regression.

It is interesting that the expectile weights are feasible in some cases. Our demonstration in
Section 4 has this property, at least for the simple regression. In that demonstration, we �nd that
an atypical individual (closer than average to the margin) has nearly twice the average expected
e�ect of the variable black on his or her probability of being denied a mortgage. Other authors may
consider exploiting expectile regression to �nd hidden results such as these.

This work sheds light on some new ideas, but leaves many questions unexplored. Asymptotic
results relating to generalized expectile regression (expectile GLS) are available only very recently
(see [8]) and not widely known or studied. Standard models for data with serial correlation or other
dependency structure are relatively unexplored in the expectile regression context. The binary
response example that we employ is another such underserved subject: standard Logit and Probit
models, or other binary response models, have not been adapted to expectile regression at all. We
hope that these contributions yet to be made are conspicuous by their absence.

We would summarize our contribution as follows. First, we show that expectile regression is
a useful tool for the social sciences. Second, we have drawn new connections between disparate
parts of the literature. Expectiles �t into the classical framework. Third, our work casts light on a
major target for future research. The entire family of mean regression estimators�not merely GMM
models or binary response estimators�may be extended to expectile regression. We cannot overstate
the amount of fundamental work that is missing from this �eld. The proverbial �low-hanging fruit�

44



are plentiful. As far as this document is concerned, any errors are the sole responsibility of the
author.
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Appendix

A1: The Linear Unbiased Estimator

Here, we prove that the Expectile coe�cients are unbiased with known variance. This follows closely
the �standard� result found in Greene [20].

Start by taking Assumption 1 and Assumption 2. Then the model is linear and we have weighted
strict exogeneity. If we write Assumption 2, replacing εi with yi − x′iβτ , we have an assumption on
the population moment

E(wi(yi − x′iβτ )|X) = 0.

This also implies orthogonality given in equation 3.4:

E(xiwi(yi − x′iβτ )|X) = 0k. (7.1)

The sample counterpart20 to this is as below, which leads to the estimator. We choose our
estimator β̂τ in order to ensure that equation 3.4 holds in-sample.

0k =
1

n

n∑
i=1

xiwi(yi − x′iβ̂τ )

=

n∑
i=1

xiwi(yi − x′iβ̂τ )

=

n∑
i=1

xiwiyi −
n∑
i=1

xiwix
′
iβ̂τ )

= X′Wy −X′WXβ̂τ

Clearly, this implies β̂τ = (X′WX)
−1

X′Wy as would be the case with any weighted least
squares problem. This is a linear estimator in the usual sense: not only is the model linear in
parameters (Assumption 1) but we also have β̂τ as a linear function of y; we merely left-multiply

by the matrix (X′WX)
−1

X′W and obtain our estimate. That is quite convenient algebraically and
for numeric computation.

We also wish to know whether the estimator β̂τ is unbiased. We say that the estimator is
unbiased if its expected value is equal to its true value or if the expected sampling error is zero.
The sampling error for β̂τ in this case is the di�erence between the estimator and its true value,
say βτ . First decompose the estimator as follows

β̂τ = (X′WX)
−1

X′Wy

= (X′WX)
−1

X′W (Xβτ + ε)

= βτ + (X′WX)
−1

X′Wε. (7.2)

20As the theoretical expectile can be de�ned as the expectation of the variable under a modi�ed distribution,
F̃ , and the sample moment conditions are the weighted orthogonality conditions under the empirical distribution
Fn(y) = n−1

∑n
i=1 I(yi ≤ y), so too can the sample moment conditions be expressed as standard moment conditions

with respect to F̃n, a weighted empirical distribution conforming to the de�nition in 2.6.
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The question is whether E(β̂τ − βτ ) = 0. We will take W as known and use the tower rule.

E(β̂τ − βτ ) = E(βτ + (X′WX)
−1

X′Wε− βτ )

= E
(

(X′WX)
−1

X′Wε
)

= E
(
E
(

(X′WX)
−1

X′Wε|X,W
))

= E
(

(X′WX)
−1
E (X′Wε|X,W )

)
= E

(
(X′WX)

−1
E

(
n∑
i=1

xiwiεi|X,W

))
= 0 (7.3)

Then β̂τ is an unbiased estimator. As is the case with GLS-type estimators W is not necessarily
known and this estimator is not necessarily feasible. However, we have devoted section5.1 of this
paper to the feasibility of the weights wi. There, we provide some examples of data and model
structures where W is known (exact) with probability one; then the estimator is perfectly feasible.

In those cases, β̂τ is a sort of �oracle� estimator because it has perfect foreknowledge of the weights
wi. Otherwise, the unbiased version of β̂τ is not feasible to estimate and its feasible counterpart
with estimated weights may be inferior.

Next we state the variance of our estimator β̂τ . From equations 7.2 and 7.3 we can see that

V ar(β̂τ |X,W ) = E
(

(β̂τ − βτ )(β̂τ − βτ )′|X,W
)

= E
(

(X′WX)
−1

X′Wεε′WX (X′WX)
−1 |X,W

)
= (X′WX)

−1
X′WE (εε′|X,W )WX (X′WX)

−1
(7.4)

Supposing that the un-weighted non-central variance21 of ε|X is E (εε′|X,W ) = Σ, we have
our solution. This sandwich-type formula22 would simplify under conditions such as, for instance,
E(Wεε′|X) = ν2In which we assumed in Assumption 4. Then, if that assumption holds23,

V ar(β̂τ |X,W ) = ν2 (X′WX)
−1
. (7.5)

As is the case with ordinary least squares, the last assumption is di�cult to take seriously.
Nevertheless, this is the result that nests the classical OLS covariance, σ2 (X′X)

−1
, when τ = .5.

In practice, we suggest deference to the heteroscedasticity-robust covariance matrix in equation 7.4.

21We have E (εi|X) 6= 0, so V ar(ε|X) 6= E (εε′|X) . The identity in equation 3.8 is not applicable because we are
interested in the variance around X′βτ under the usual distribution of errors, not the weighted variance, and the
variance or weighted variance around the usual measure of central tendency E(y|X).

22Replacing E (εε′|X,W ) with the estimator Σ̂ = diag(ε̂i
2) produces the usual sandwich type heteroscedasticity-

robust estimator of Eicker [17] or White [46]. That estimator, with the corresponding estimates Ŵ = diag(ŵi), is
Newey and Powell's estimator [37] of the asymptotic covariance matrix, which those authors prove to be consistent
under general conditions.

23A standard estimator for equation 7.5 is

ν̂2
(
X′ŴX

)−1
=

1

n− k

n∑
i=1

ŵiε̂2i

(
X′ŴX

)−1
.

See the discussion in Section 6.
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A2. Expectile Projection and Annihilator Matrices

Here we discuss brie�y the projection and annihilator matrices from this problem, which is helpful
for the result in appendix A3. It is reasonably obvious that these matrices are symmetric but not
idempotent. That fact is standard for GLS-type estimators, but reduces to a particular meaningful
form for expectile weights. First, notice that P.5 = X(X′X)−1X′ and M.5 = I −X(X′X)−1X′ are
symmetric and idempotent. In the asymmetrically weighted case, we have

Pτ = X(X′WX)−1X′W 6= WX(X′WX)−1X′ = P ′τ

and
Mτ = I − Pτ 6= I − P ′τ = M ′τ

so neither matrix is symmetric. However,

PτPτ = X(X′WX)−1X′WX(X′WX)−1X′W = X(X′WX)−1X′W = Pτ

MτMτ = (I − Pτ )(I − Pτ ) = II − IPτ − PτI + PτPτ = I − Pτ = Mτ

both matrices are idempotent. These are simple in the location model: consider the special case
where X is merely a vector of ones; 1n. Then

Pτ = 1n(1′nW1n)−11′nW

=

(
n∑
i=1

wi

)−1
1n1′nW

=

(
n∑
i=1

wi

)−1
w1 w2 · · · wn
w1 w2 wn
...

...
. . .

...
w1 w2 · · · wn


note that left multiplication by Pτ maps the vector y as follows

Pτy = 1n( 1′nW1n︸ ︷︷ ︸
=
∑n
i=1 wi

)−1 1′nWy︸ ︷︷ ︸
=
∑n
i=1 wiyi

= 1n

∑n
i=1 wiyi∑n
i=1 wi

= 1nȳτ
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However, if we write P ′τy, we have

P ′τy = W1n(1′nW1n)−11′ny

=

(
n∑
i=1

wi

)−1
w1 w1 · · · w1

w2 w2 w2

...
...

. . .
...

wn wn · · · wn

 y

=


w1

w2

...
wn


∑n
i=1 yi∑n
i=1 wi

.

Similarly,

P 1′

τ P
1
τ = W1n(1′nW1n)−11′n1n(1′nW1n)−11′nW

=

(
n∑
i=1

wi

)−2
w1 w1 · · · w1

w2 w2 w2

...
...

. . .
...

wn wn · · · wn




w1 w2 · · · wn
w1 w2 wn
...

...
. . .

...
w1 w2 · · · wn



= n

(
n∑
i=1

wi

)−2
w2

1 w1w2 · · · w1wn
w2w1 w2

2 w2wn
...

...
. . .

...
wnw1 wnw2 · · · w2

n


whereas,

P 1
τ P

1′

τ = 1n(1′nW1n)−11′nWW1n(1′nW1n)−11′n

=

(
n∑
i=1

wi

)−2
w1 w2 · · · wn
w1 w2 wn
...

...
. . .

...
w1 w2 · · · wn




w1 w1 · · · w1

w2 w2 w2

...
...

. . .
...

wn wn · · · wn



=

(
n∑
i=1

wi

)−2 n∑
i=1

w2
i


1 1 · · · 1
1 1 1
...

...
. . .

...
1 1 · · · 1


And the di�erence is clear.

A3. Trace of M ′
τWMτ

Here, we show that trace(M ′τWMτ ) = trace(W )− trace(WPτ ).
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The expected value of the weighted sum of squared errors is

E(WSSE|X,W ) = E(ε̂′Wε̂|X,W )

= E(ε′M ′τWMτ ε|X,W )

=

n∑
i=1

n∑
j=1

[M ′τWMτ ]ij E(εiεj |X,W )

=

n∑
i=1

[M ′τWMτ ]ii σ
2
τ

which relies on the trace of M ′τWMτ .

M ′τWMτ = (I − Pτ )′W (I − Pτ )

= W −WPτ − P ′τW + P ′τWPτ .

This is straightforwards. The two negative matrices have the same trace:

trace(WPτ ) = trace((X′WX)−1X′WWX)

= trace

( n∑
i=1

wixix
′
i

)−1( n∑
i=1

w2
i xix

′
i

)
. k

and

trace(P ′τWPτ ) = trace(WX(X′WX)−1X′WX(X′WX)−1X′W )

= trace((X′WX)−1X′WX(X′WX)−1X′WWX)

= trace(WPτ ).

So trace(M ′τWMτ ) = trace(W )− trace(WPτ ). Then

E(WSSE|X,W ) = (trace(W )− trace(WPτ ))σ2
τ

In the special case where X = 1n, we have

E(WSST |X,W ) = E(ε̂′Wε̂|X,W )

= E((y − ȳτ )′W (y − ȳτ )|X,W )

= (trace(W )− trace(WP 1
τ ))σ2

τ

where

trace(WP 1
τ ) = trace((1′nW1n)−11′nWW1n)

=

∑n
i=1 w

2
i∑n

i=1 wi
≤ 1.

Note that this value is strictly contained in the unit interval because w2
i < wi for τ ∈ (0, 1)
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